Notes about Purely Functional Data Structures

Gene Michael Stover

created Sunday, 2005 November 27
updated Sunday, 2006 March 12

Copyright © 2005-2006 Gene Michael Stover. All rights reserved. Permission to
copy, store, & view this document unmodified & in its entirety is granted.

Contents

1 What is this?

2 Answers to Exercises in Chapter 2

2.1 Exercise 2.1
2.2 Exercise 2.2
2.3 Exercise 2.3
24 Exercise 2.4
2.5 Exercise 2.5 L
26 Exercise2.6
3 Answers to Exercises in Chapter 3

3.1 Exercise 3.1
3.2 Exercise 3.2
3.3 Exercise 3.3

3.3.1 Discussion of the three solutions
3.4 Exercise 3.4 (Cho & Sahni)

341 Part A.

342 Part B.

343 Part C.

344 PartD.
3.5 Exercise 3.5
3.6 Exercise 3.6
3.7 Exercise 3.7
3.8 Exercise 3.8
3.9 Exercise 3.9

4 Answers to Exercises in Chapter 4

4.1 Exercise 4.1 e
4.2 Exercise 4.2

5 Fundamentals of Amorization

15
15
17
18
20
22
22
22
23
24
25
27
29
31
31

33
33
34

37

6

Qo

g a w »

Amortized Queues Performance Comparison

6.1 Interface to Queues
6.2 Implementsions of Queues
6.2.1 Naive Queues
6.2.2 Batch Queues
6.2.3 Banker’s Queues
6.2.4 Physicist’s Queues
6.3 The Performance Results

6.4 Observations about Memoization & Memory Use

6.5 Analysis

Other Observations

7.1 NIL & object-oriented programming
7.2 Nil for empty & special cases
7.3 Memoization & memory
7.4 Lisp & suspensions

The Source Code

Other File Formats

Some comments about suspend & force
Source Code (amo.lisp)

Source Code (ztream.lisp)

CONTENTS

47

....... 47
....... 47
....... 48
....... 48

49

51

53

55

63

Chapter 1

What is this?

This is still under construction as of 2006 January 10. I plan to finish
it Some Time Soon.

These are my notes from Purely Functional Data Structures [2], by Chris
Okasaki. It includes my answers to exercises & a performace comparison that
was inspired by the book.

CHAPTER 1. WHAT IS THIS?

Chapter 2

Answers to Exercises in
Chapter 2

Some of the exercises rely on the sets, binary search trees, & Unbalanced Sets
that are presented in [2] so I had to implement those in Lisp.

For the Ordered interface, I created a CLOS protocol. I did not create a CLOS
protocol for sets & binary search trees for these reasons:

1.

Given: I wanted to support multiple, co-existant implementations of member
& insert so I could run performance comparisons between them.

. If your Lisp implementation of binary search trees is analogous to the

Standard ML implementation in [2], which is what I wanted, you can’t
specialize methods on it because all of your binary search trees will have
the type CONS as far as Lisp is concerned.

. If you create types for your different implementations of binary search

trees so you can use CLOS, but you retain similarity with the Standard ML
implementations by using NIL as an empty tree, your MEMBER methods
will work just fine by re-using a MEMBER that is specialized for NIL. In fact,
that’s very similar to how it’s done in the book. Your INSERT methods
cannot all use the same INSERT specialized for NIL because INSERT on NIL
must create trees of a particular type, but your INSERT method specialized
for NIL won’t know what that type is.

. To overcome the problem in the previous item, you might use a flag in

your classes to indicate a terminal node. Then your INSERT methods would
work on empty trees because they would have full type information for the
tree. This would work, I guess, but it’s ugly, so I'm not going to do it.

. You could implement the “business end” of the data structure with lists,

like in [2], then wrap it in an object whose type would give INSERT all
the information it needed. I would probably do something like this in a

7

8 CHAPTER 2. ANSWERS TO EXERCISES IN CHAPTER 2

production application, but it creates complexity which might hide the
point of the exercises from the book. So though I like this idea, I will not
use it here.

The different insert & member functions in the book operate on the same
binary search tree structures, so I chose to create a different function for each
implementation of insert & member.

I created an interface for ORDERED because that’s the way it’s done in [2],
but in a real application, I would prefer to give the comparator as a parameter
to the tree, not as part of the objects held in the tree.

The source code for ORDEREDs is in ordered.lisp.

The source code for sets, & trees is in chapter02.lisp.

2.1 Exercise 2.1

Write a function suffixes of type alist — alistlist that takes a
list xs & returns a list of all the suffizes of xs in decreasing order of
length For example,

suffixes [1, 2, 3, 4] = [[1, 2, 3, 4], [2, 3, 4],
[3, 41, [4], []]

Show that the resulting list of suffizes can be generated in O(n)
time & represented in O(n) space.

Here’s a suffixes function in Lisp.

(defun suffixes (1st)
(if (endp 1lst)
7 (O)
(cons 1st (suffixes (rest 1st)))))
=> SUFFIXES

(suffixes (1 2 3 4))
=> ((1234) (234) (34) (4) NIL)

(suffixes ())
=> (NIL)

Show time: To generate the list of suffixes, we walk the original list, one
element at a time. If we call suffixes on an empty list, it does not recurse, so
we call suffixes once. If we call suffixes on a list of 1 element, it recursively
calls itself once, so we call suffixes twice. In general, we call suffixes N +1
times for a list of length N, which is O(N).

Show space: Suffixes creates a list of N + 1 elements. Each element’s cons
cell has a car which points to an element in the original list, so only the cons
cells of the new list are freshly allocated. There will be N + 1 cons cells in the
new list, so the space requirement is O(N).

2.2. EXERCISE 2.2 9

2.2 Exercise 2.2

In the worst case, member performas approximately 2d compar-
isons, where d is the depth of the tree. Rewrite member to take no
more than d+1 comparisons by keeping track of a candidate element
that might be equal to the query element (say, the last element for
which < returned false or <= returned true) & checking for equality
only when you hit the bottom of the tree.

The source code for my answer is in the file chapter02.1lisp. Load it &
search for “Exercise 2.2”. Here’s my discussion.

(labels
((member3 (x tree candidate)
(if (null tree)
(xeq x candidate)
(let ((value (bst-value tree)))
(if (x1t x value)
(member3 x (bst-left tree) candidate)
;; else
(member3 x (bst-right tree) value))))))

(defun tree-member-2-2 (x tree)
;3 This IF is not a performance optimization; it would be
;; dumb to use it as a performance optimization. Instead,
;3 1t’s the easiest way to keep NIL out of the candidate.
(if tree
(member3 x tree (bst-value tree))
nil)))

I took the hint from the exercise & used it in an obvious way. Most of the
work happens in the helper function, MEMBER3. One twist is in the TREE-
MEMBER-2-2 function, when we check that TREE is not NIL. That is not a
performance optimization. It keeps NIL out of the CANDIDATE argument for
MEMBER3. We want to do that because MEMBERS is simpler if it need not worry
about a NIL candidate. Why? Because we don’t want to bother to specialize
the comparison methods for NIL.

My answer, with test programs, is in chapter02.lisp.

2.3 Exercise 2.3

Inserting an existing element into a binary search tree copies the
entire search path even though the copied nodes are indistinguishable
from the originals. Rewrite INSERT using exceptions to avoid this
copying. FEstablish only one handler per insertion rather than one
handler per iteration.

10 CHAPTER 2. ANSWERS TO EXERCISES IN CHAPTER 2

It’s interesting that the exercise bothers to say that there should be only one
active exception handler, not one per call.

Here’s my answer. This source code & some test programs are in chap-
ter02.lisp.

(labels
((insert2 (x tree root)
(if (null tree)
(make-bst :value x :left nil :right nil)
(let ((value (bst-value tree)))
(cond ((xlt x value)
(make-bst :value value
:left (insert2 x (bst-left tree) root)
:right (bst-right tree)))
((xgt x value)
(make-bst :value value
:left (bst-left tree)
:right (insert2 x (bst-right tree) root)))
(t (throw ’already-a-member root)))))))

(defun insert-2-3 (x tree)
(catch ’already-a-member
(insert2 x tree tree))))

2.4 Exercise 2.4

Combine the ideas of the previous two exercises to obtain a ver-

sion of insert that performas no unnecessary copying € uses no
more than d + 1 comparisons.

Here is my answer to Exercise 2.4. The source code & test programs are also
in chapter02.1lisp.

(labels
((insert4 (x tree candidate root)
(cond ((equal x candidate)
(throw ’already-a-member root))
((endp tree)
(make-tree x))
((< x (tree-value tree))
(insert4 x (tree-left tree) candidate root))
(t
(insert4 x (tree-right tree) (tree-value tree) root)))))
(defun tree-insert-2-4 (x tree)
(catch ’already-a-member
(insert4 x tree (tree-value tree) tree))))

2.5. EXERCISE 2.5 11

2.5 Exercise 2.5

Sharing can also be useful within a single object,not just between
objects. For example, if the two subtrees of a given node are identical,
then they can be represented by the same tree.

(a) Using this idea, write a function complete of type Elem X
int — Tree where complete (x, d) creates a complete binary tree
of depth d with x stored in every node. (Of course, this function
makes no sense for the set abstractiion, but it can be useful as an
auziliary function for other abstractions, such as bags.) This func-
tion should run in O(d) time.

(b) Extend this function to create balanced trees of arbitrary size.
These trees will not always be complete binary trees, but should be
as balanced as possible: for any given node, the two subtrees should
differ in size by at most one. This function should run in O(logn)
time. (Hint: use a helper function create2 that, given a size m,
creates a pair of trees, one of size m and one of size m +1.)

Here is my answer to Exercise 2.5.a. The source code & test programs are
also in chapter02.1lisp.

(defvar *complete-2-5-count* 0)

(defun complete-2-5 (x d)
(incf *complete-2-5-countx*)
(if (zerop 4)
nil
(let ((tree (complete-2-5 x (1- d))))
(make-bst :value x :left tree :right tree))))

The print-table-2-5-a function creates a table of run-times & call counts
for different values of N. The run-time increases so slowly with d that the times
mostly show a bunch of zeros. So the most useful performance measurement is
the call counter, which is in the third column. Table 2.1 shows the results from
print-table-2-5-a.

Looks like the number of calls is O(d + 1), which is linear as requested.

Here is my answer for part B:

(defvar *balanced-2-5-count* 0)

(defun balanced-2-5 (x n)
"Given a size, create a tree of size N & populate it with X.
The tree will be more-or-less balanced."
(incf #*balanced-2-5-countx*)
(cond ((zerop n) nil)
((eql n 1) (make-bst :value x :left nil :right nil))
((evenp (1- n))

12 CHAPTER 2. ANSWERS TO EXERCISES IN CHAPTER 2

n | seconds calls
0 0.00e+0 1
100 0.00e+0 101
200 0.00e+0 | 201
300 0.00e+0 | 301
400 0.00e+0 | 401
500 0.00e+0 | 501
600 0.00e+0 | 601
700 0.00e+0 | 701
800 0.00e+0 | 801
900 0.00e+0 | 901
1000 0.00e+0 | 1001

Table 2.1: Performance measurements for function complete-2-5

n | seconds | calls | fraccallslgN

2 | 0.00e+0 3 3.00e+0
3002 | 0.00e+0 334 2.89e+1
6002 | 0.00e+0 523 4.17e+1
9002 | 0.00e+0 965 7.35e+1
12002 | 0.00e+0 714 5.27e+1
15002 | 10.00e-3 | 1247 8.99e+1
18002 | 0.00e+0 | 1420 1.00e+2
21002 | 10.00e-3 891 6.21e+1
24002 | 0.00e+0 907 6.23e+1
27002 | 0.00e+0 | 1305 8.87e+1

Table 2.2: Performance measurements for function balanced-2-5

(let ((subtree (balanced-2-5 x (/ (1- n) 2))))
(make-bst :value x :left subtree :right subtree)))
(t (let* ((half (floor (/ (1- n) 2)))
(subtree (balanced-2-5 x half))
(subtreel (balanced-2-5 x (1+ half))))
(make-bst :value x :left subtree :right subtreel)))))

It & its test programs are in chapter02.lisp.

As with the answer for part A, it runs so quickly that measuring the work
in real-time is difficult, so I measured the work by counting the number of calls.
Table 2.2 shows the performance results. They were generated by function
print-table-2-5-b which is also in chapter(02.lisp.

Does it run in O(log N) time? I'm not sure. I guess it does, but I would feel

more confident is the values in the clglzif column varied less.

2.6. EXERCISE 2.6 13

2.6 Exercise 2.6

Adapt the UnbalancedSet functor to support finite maps rather
than sets. Figure 2.10" gives a minimal signature for finite maps.
(Note that the NotFound exception is not predefined in Standard ML
— you will have to define it yourself. Althrough this exception could
be amde part of the FiniteMap signature, with every implementation
defining its own NotFound exception, it is convenient for all finite
maps to use the same exception.)

I'm not going to change any of the Binary Search Tree code I've written.
Instead, I'll create a Finite Map Node class & comparison methods for it. Then
I should be able to create Finite Maps by inserting Finte Map Nodes into binary
search trees.

My answer to exercise 2.6 is in the file chapter02.lisp. Search for “Exercise
2.6”; that’s where the answer begins.

Here are some important parts of the solution:

(defclass finite-map-node ()
((key :initarg :key :accessor finite-map-node-key)
(value :initarg :value :accessor finite-map-node-value)))

(defmethod xeq ((x finite-map-node) (y finite-map-node))
(xeq (finite-map-node-key x) (finite-map-node-key y)))
(defmethod xgeq ((x finite-map-node) (y finite-map-node))

(xgeq (finite-map-node-key x) (finite-map-node-key y)))
(defmethod xgt ((x finite-map-node) (y finite-map-node))
(xgt (finite-map-node-key x) (finite-map-node-key y)))
(defmethod x1t ((x finite-map-node) (y finite-map-node))
(x1t (finite-map-node-key x) (finite-map-node-key y)))
(defmethod x1t ((x finite-map-node) (y (eql nil)))
nil)
(defmethod xleq ((x finite-map-node) (y finite-map-node))
(xleq (finite-map-node-key x) (finite-map-node-key y)))

(defun bind (key value map)
(insert (make-instance ’finite-map-node :key key :value value) map))

;3 This LOOKUP function satisfied the interface described in
;; Okasaki except that it does not throw. When the key is

;; not found in the map, instead of tossing an exception, it
;; returns NIL. So a key bound to NIL is indistinguishable

;; from a key that is not in the table. I implemented it this
;; way because (a) it resembles the semantics of Common Lisp’s
;; hash tables & (b) I dislike exceptions.

! That’s Figure 2.10 in [2], page 16.

14 CHAPTER 2. ANSWERS TO EXERCISES IN CHAPTER 2

(defun lookup (x map)
(let ((node (xmember (make-instance ’finite-map-node
:key x :value nil)
map)))
(and node
(finite-map-node-value node))))

Chapter 3

Answers to Exercises in
Chapter 3

Some of the code for Chapter 3 in [2] use an ORDERED interface. My Lisp
implementation of that interface is in ordered.lisp.

3.1 Exercise 3.1

Prove that the right spine of a leftist heap of size n contains at
most |log(n + 1) elements. (All logarithms in this book are base 2
unless otherwise indicated.)

1. Think about a lefist heap which has an added restriction of being “as
balanced as possible”. Figure 3.1 shows such a tree with seven nodes.
Notice that the tree is both a leftist heap & a balanced binary tree.

2. The tree in Figure 3.1 is leftist, balanced, & full. In this state, n = 2" —1,
where n is the number of nodes & 7, is the height of the right subtree.

Figure 3.1: An example of a “balanced as possible” leftist heap of seven nodes

15

16

10.

11.

12.

13.

14.

CHAPTER 3. ANSWERS TO EXERCISES IN CHAPTER 3

This rule applies to the tree in Figure 3.1 & to any other leftist, balanced,
full tree.

If we add a node to the tree, the leftist property forces the new node to
become a left child of the left-most node. After that addition, n > 2™ —1.

As we add nodes one at a time, the leftist property causes the new nodes
to fill open left slots before filling open right slots, but the “balanced as
possible” property prevents the new nodes from starting a new level until
the current level is full. Eventually, the lowest level fills & we again have
a leftist, balanced, full tree. Until the tree is again full, it is always true
that n > 2" — 1. When the tree is again full, it is true that n = 2" — 1,
but it will still be true that n > 2™ — 1.

So in a “balanced as possible”, leftist heap/tree, it is always true that
n> 2" —1.

Now consider a leftist heap that does not have the “balanced as possible”
property. As we add nodes to it, the leftist property forces them to fill
open left-side slots before filling right-side slots, but without a “balanced
as possible” property, they may start a new level before filling the current
lowest level. In other words, in a leftist heap, the left subtree may increase
in depth more quickly than can the left subtree in a “balanced as possible”
leftist heap. So in a leftist heap, the depth, r, of the right subtree may be
less than or equal to the depth, 7y, of a “balanced as possible” leftist heap
with the same number of nodes. So r < ry.

So2r—1<2™ —1<n.

2" —1<n

2r<n+1

log 2" < log(n + 1)

r <log(n+1)

Because r is integral, r < |log(n + 1)]

The depth, r, of the right-most subtree is also the length of the right spine.

So the right spine contains r nodes, & r < |log(n + 1)].

It’s hardly the shortest proof in the world, but it’s all me. I didn’t look in
any books to see how it was done until I had finished this proof.

3.2. EXERCISE 3.2 17

3.2 Exercise 3.2

Define insert directly rather than via a call to merge.

My answer is in the file chapter03.lisp. To find it & its test programs, search
for “defun insert-3-2”. Here is a copy of INSERT-3-2 function.

(defun insert-3-2 (x heap)
"Insert item X into the HEAP, returning a new heap, & without
calling XMERGE."
(cond ((null heap)

;3 If we insert an item into an empty heap, the new

;; heap has just one item -- our new item. Our

;3 MAKET function does that.

(maket x nil nil))
((xleq x (heap-x heap))

;; The new item X comes before the current node’s item.

;; So we make a new heap with X as its item, & we push

;; the current node’s item into one of the subtrees.
(makeT x (heap-left heap) (insert-3-2 (heap-x heap)

(heap-right heap))))

(t

;3 X comes after the current node, so we recursively insert
;; it into a subtree.

(makeT (heap-x heap)

(heap-left heap)
(insert-3-2 x (heap-right heap))))))

Other than the trivial case of inserting an item into an empty heap, INSERT-
3-2 works by walking the tree. At any node in the tree, there are two cases
(besides the trivial case).

In the first case, x < node’sr. When that happens, we need to make a new
node for x & then insert the current node’s x into one of the subtrees.

In the second case, x > node’sz. When that happens, we recursively insert
x into one of the subtrees.

Which subtree do we use? It’s nice to make an effort to keep the tree
somewhat balanced, so we should insert the item into the subtree with the
smallest rank. We could check the ranks of the subtrees, but if we remember
that the right subtree’s rank is never greater than the rank of the left subtree,
we can skip the check. So we always insert into the right subtree. Our makeT
helper function will ensure that the subtree with the largest rank becomes the
new left subtree.

I’'m curious to see why Okasaki gave this as an exercise. Is there an advantage
to an INSERT function which does its own work instead of passing the buck to
MERGE? Let’s do a performance comparison to see.

18 CHAPTER 3. ANSWERS TO EXERCISES IN CHAPTER 3

function | count | seconds rate
INSERT uses XMERGE 57 | 3.04e40 | 1.88e+1
INSERT self-contained 23 | 3.03e+0 | 7.59e+0

Table 3.1: Result of comparing the plain INSERT to my answer for Exercise 3.2

Table 3.1 shows the results of my performance comparison. I don’t see any
benefit to the INSERT function which does all of its own work. I'm a little
surprised by that.

Here is the Lisp expression I used to make the performance comparison.

* (in-package "CHAPTER-03")

* (let ((1lst (loop for i from 1 to 10000
collect (random 100))))
(labels
((test (insert)
;; Insert a bunch of items into an empty heap.
(declare (type function insert))
(do ((x 1lst (rest x))
(heap nil (funcall insert (first x) heap)))
((endp x) heap)))
(test-with-xmerge ()
;; Call TEST using INSERT
(test #’insert))
(test-3-2 O
;3 Call TEST with INSERT-3-2.
(test #’insert-3-2)))
(with-open-file (strm "tab-ex0302.tex" :direction :output
:if-exists :rename-and-delete)
(cybertiggyr-test:ratetable
(1ist (1ist "INSERT uses XMERGE" #’test-with-xmerge)
(1ist "INSERT self-contained" #’test-3-2))
strm))))

#<FILE-STREAM "tab-ex0302.tex">

3.3 Exercise 3.3

Implement a function fromList of type Elem.T list — Heap
that produces a leftist heap from an unordered list of elements by
first converting each element into a singleton heap € then merging
the heaps until only one heap remains. Instead of merging the heaps
in one right-to-left or left-to-right pass using foldr or foldl, merge

3.3. EXERCISE 3.3 19

the heaps in [logn| passes, where each pass merges adjacent pairs
of heaps. Show that fromList takes only O(n) time.

My answer is in the file chapter03.lisp. To find it & its test programs,
search for “defun from-list-01”. It’s called FROM-LIST-01 because I wrote three
solutions; FROM-LIST-01 is the fastest. Here is a copy of FROM-LIST-01 function:

(labels
((mo02 (1st)
(do ((x lst (mapcar #’(lambda (1lst2)
(apply #’xmerge 1st2))
(pairs x))))
((<= (length x) 1)
(first x)))))

(defun from-1list-02 (1st)
(declare (type list 1st))
(m02
;; Convert each item in LST into a single-element heap.
(mapcar #’(lambda (x) (makeT x nil nil)) 1st))))

The FROM-LIST-02 function converts the list of items into a list of single-item
leftist heaps, then passes the buck to its helper function, M02. M02 repeatedly
splits the list into pairs, merges the heaps in each pair, & then repeats by
splitting the new list into pairs.

Given a list of length n, MO2 calls XMERGE for each of the 4 pairs, then
performs same operation on the new list of 5 items. So for a list of length n,
the number of merges is § + 4 + g --- + 1 = n. So from-list-01 runs in O(N)
time.

So much for the theory. Table 3.2 shows the results of an actual performance
run.

Remember that the rate from the fourth column measures function calls per
second, & the work of one of those function calls is proportional to N. So to
convert the rate from calls-per-second to items-per-second, we must multiply by
N.

The fifth column shows the rate times N. The values are very nearly the
same. In fact, I'm impressed that they are so consistent. So they effectively fit
a line, & that line is O(N). So FROM-LIST-02 runs in O(N) time both in theory
& in practice.

Here is the expression I used for the performance run in Table 3.2. T added
the fifth column by hand.

* (with-open-file (strm "tab-ex0303a.tex" :direction :output
:if-exists :rename-and-delete)
(labels
((make-test (n)
(declare (type integer n))

20 CHAPTER 3. ANSWERS TO EXERCISES IN CHAPTER 3

function | count | seconds rate | rate xn
2| 352597 | 3.05e+0 | 1.16e+5 | 2.32e+5H

4 | 202727 | 3.00e+0 | 6.76e+4 | 2.70e+5

8 | 105340 | 3.00e+40 | 3.51e+4 | 2.81e+5

16 52065 | 3.00e+0 | 1.74e+4 | 2.78e+5
32 26303 | 3.00e+0 | 8.77e+3 | 2.81e+b
64 12225 | 3.00e+0 | 4.07e+3 | 2.60e+5
128 6295 | 3.00e+0 | 2.10e+3 | 2.69e+5
256 3043 | 3.00e+0 | 1.0le+3 | 2.59¢e+5
512 1566 | 3.00e+0 | 5.22e+2 | 2.67e+5
1024 775 | 3.04e+0 | 2.55e+2 | 2.61le+5
2048 394 | 3.00e+0 | 1.31e+2 | 2.68e+5

4096 170 | 3.00e4-0 | 5.66e+1 | 2.32e+5
8192 88 | 3.0le+0 | 2.93e+1 | 2.40e+5
16384 39 | 3.06e4+0 | 1.28e+1 | 2.10e+5

Table 3.2: Results of performance run of FROM-LIST-02

(let* ((length (expt 2 n))
(1st (loop for i from 1 to length
collect (random 100))))
(1ist length
#’ (lambda ()
(from-1ist-02 1st))))))

(cybertiggyr-test:ratetable
(loop for n from 1 to 14 collect (make-test n))
strm)))

#<FILE-STREAM "tab-ex0303a.tex">
b3

3.3.1 Discussion of the three solutions

I wrote three solutions. They are called FROM-LIST-00, FROM-LIST-01, & FROM-
L1sT-02. All are in the file chapter03.lisp. All three solutions have the same
form: A FROM-LIST-* function that calls a local helper function. Each FROM-
LIST-* function applies makeT to each element in the list to obtain a list of single-
item leftist heaps. Then the FROM-LIST-* function calls its helper function on
that new list.

FROM-LIST-00 is, to my mind, the obvious solution. If the list is empty, it
returns an empty list. If the list has one element (which is a heap, thanks to
the enclosing FROM-LIST-00 function), it returns that element. If the list has
two elements, it merges them & returns the result. Otherwise, it calls itself on
each half of the list & merges the two results.

3.3. EXERCISE 3.3 21

function | count | seconds rate
from-1list-00 30 | 3.02e+0 | 9.92e+0
from-list-01 70 | 3.02e+0 | 2.32e+1
from-list-02 70 | 3.03e+0 | 2.31e+1

Table 3.3: Results of performance comparison of the three FROM-LIST-* func-
tions

My gut feeling said that splitting the list into two halves is inefficient, so I
wrote FROM-LIST-01. Its helper function has the same three special cases, but
in its general case, it splits the list into pairs, merges the two elements in each
pair to get a shorter list of larger heaps, & then calls itself on the new list.

Since FROM-LIST-01 used simple tail recursion, I was curious to see the
results of removing that recursion by hand, so I wrote FROM-LIST-02. It uses
the same pair-making logic as FROM-LIST-01, but it does so in a loop, & I took
advantage of the fact that FIRST NIL is NIL to collapse the case into a single
expression.

I compared the performances of the three FROM-LIST-* functions, & the re-
sults are in Table 3.3. The table shows that FROM-LIST-01, the implementation
that splits into pairs & uses a single, tail-recursive call, is the fastest by a hair’s
breadth. The iterative solution, FROM-LIST-02, is neck-&-neck with it. In fact, I
ran the performance comparison many times, & FROM-LIST-02 was occasionally
faster than FROM-LIST-01 by one or two iterations in the count column.

Even though it’s not the fastest, I prefer FROM-LIST-02 because it’s more
understandable, in my opinion.

Here is the expression I used for the performance comparison:

* (in-package "CHAPTER-03")

#<PACKAGE "CHAPTER-03">
* (let ((biglst (loop for i from 1 to 10000 collect (random 100))))
(labels
((test (fn)
"Call FN on BIGLST. Assume FN is one of the FROM-LIST-*
functions."
(declare (type function fn))
(funcall fn biglst))
(m00 () (test #’from-1ist-00))
(m01 () (test #’from-list-01))
(m02 () (test #’from-1list-02)))

(with-open-file (strm "tab-ex0303b.tex" :direction :output
:if-exists :rename-and-delete)
(cybertiggyr-test:ratetable
(1ist (list "from-1list-00" #’m00)
(1ist "from-list-01" #’m01)
(1ist "from-list-02" #’m02))

22 CHAPTER 3. ANSWERS TO EXERCISES IN CHAPTER 3

strm))))

#<FILE-STREAM "tab-ex0303b.tex">
*

3.4 Exercise 3.4 (Cho & Sahni)

Weight-biased leftist heaps are an alternative to leftist heaps tha
replace the leftist propety with the weight-biased leftist property; the
size of any left child is at least as large as the size of its right sibling.

(a) Prove that the right spine of a weight-biased leftist heap con-
tains at most |log(n + 1)| elements.

(b) Modify the implementation in Figure 3.2' to obtain weight-
biased leftist heaps.

(¢) Currenty, merge operates in two passes: a top-down pass
consisting of calls to merge, & a bottom-up pass consisting of calls
to the helper function makeT. Modify merge for weight-biased leftist
heaps to operate in a single, top-down pass.

(d) What advantages would the top-down version of merge have
i a lazy environment? In a concurrent environment?

3.4.1 Part A

The proof from Exercise 3.1 (Section ??) applies to weight-biased leftist heaps
if we change “leftist property” to “weight-biased leftist property”. Significantly,
in the new versio of step 3 of the proof, the weight-biased leftist property still
forces new nodes to fill the left-most leaf nodes.

3.4.2 Part B

To make a weight-biased leftist heap system from the leftist heap system devel-
oped earlier in the chapter, the main change is to replace the rank function with
a weight function. We also change the makeT function to call the new weight
function instead of the rank function. I also created a new weight-biased leftist
heap structure (called WHEAP), & copied all the leftist heap functions to weight-
biased leftist heap functions & placed a “w” character at the beginning of their
names.

The whole system & test programs are in the file chapter03.lisp; search for
“defstruct wheap”. Here are the important parts of the change (the structure,
the weight function, & the new wmakeT function).

(defstruct wheap weight x left right)

(defun weight (heap)

1Tt means Figure 3.2 in [2], page 20.

3.4. EXERCISE 3.4 (CHO & SAHNI) 23

"Return the weight of the heap. An empty heap has weight 0."
(if heap
(wheap-weight heap)
0))

(defun wmaket (x a b)
(if (>= (weight a) (weight b))
(make-wheap :weight (+ (weight a) (weight b) 1)
:x x :left a :right b)
;5 else
(make-wheap :weight (+ (weight a) (weight b) 1)
:x x :left b :right a)))

3.4.3 Part C

The exercise asks us to remove the makeT call that wraps merge’s recursive call.
If we can place the makeT elsewhere so that it doesn’t wrap the recursive merge,
we’ll have a tail-recursive merge.

Notice that when we call makeT, the order of the two child subtrees does not
matter because makeT will ensure that the heavier subtree is on the left. We
can use this detail to keep a stack of arguments for calling makeT. Each element
of that stack has the X for a node & one of the subtrees for the node.

My answer is in the file chapter03.lisp; search for “defun wmerge-3-4¢”. Here
is a copy of that function:

(labels
((m00 (stack a b)
(cond ((null a)
;3 Use the stack to call WmakeT to build the heap.
(reduce #’(lambda (&optional x y)
(cond ((null x) y)
((null y) x)
((typep x ’wheap)
(WmakeT (first y) (second y) x))
(t ; X is a list, Y is a heap
(WmakeT (first x) (second x) b))))
stack
:initial-value b))
((null b)
;; Like the previous case, but B is empty. Instead
;; of duplicating the code, we’ll swap A & B to use
;; the previous chunk of code.
(m00 stack b a))
((xleq (wheap-x a) (wheap-x b))
;; A’s X goes into a new node. A’s left will be
;; one of the subtrees. We’ll merge A’s right &

24 CHAPTER 3. ANSWERS TO EXERCISES IN CHAPTER 3

;; B to make the other subtree.

(m00 (cons (list (wheap-x a) (wheap-left a)) stack)
(wheap-right a)
b))

(t ; A’s X > B’s X

(m00 (cons (list (wheap-x b) (wheap-left b)) stack)
(wheap-right b)
a)))))

(defun wmerge-3-4c (heapl heap2)
"This is the top-down merge for Part C of Exercise 3.4."
(m00 () heapl heap2)))

Though I satisfied the literal requirements of Exercise 3.4 part C, I'm not
convinced my answer is what Okasaki had in mind. Though this merge function
is tail-recursive?, it still calls makeT after it has walked the tree. It still does
the same work as the basic merge function; it just doesn’t save the work on the
call stack. Calling this new function a “top-down merge” seems to be splitting
hairs, in my opinion, sort of like saying cheddar is cheddar, not cheese.

On the other hand, since it is tail recursive now, we could remove all recursion
as I did in FROM-LIST-02 in Exercise 3.3.

Note to self, after the fact

Thinking about how Part D suggests that the top-down merge might have ben-
efits in a lazy environment. .. Maybe a better answer would have been for the
top-down merge to create nodes with makeT, but each child would be a function,
not a value. Having read the book already, I know that this is part of making a
lazy data structure, but then we’d have to modify the entire data structure. So
the wheap structure I have wouldn’t work any more. We’d need a lazy, weight-
biased, leftist heap all because we wanted merge to be top-down. So this would
be another way to solve the problem, but I don’t think it’s what Okasaki had
in mind. I'm pretty sure I failed to find the solution.

fixme: What if we reverse the order of makeT & the recursive merge? In
other words, what if we called makeT, then called merge on the result?

3.4.4 PartD

I don’t see any benefit to my WMERGE-3-4C function in a lazy environment.
It still does all the work that the original down-up merge did. I’'m pretty sure
it would not be any easier for the language system to memoize. So I don’t see
any advantage.

Likewise, I see no benefit to my WMERGE-3-4C function in a concurrent
environment. Each call to WMERGE-3-4C does all its work before passing

2 Actually, this new merge function is a trivial wrapper around its helper function, which
is tail-recursive.

3.5. EXERCISE 3.5 25

the buck to another instance of WMERGE-3-4C. In fact, if you eliminated the
recursion by hand, WMERGE-3-4C could be implemented as a single loop that
does all the work while accumulatig a stack, then a second loop that does the
REDUCE work on the stack. The first loop would not be naturally parallizable,
though maybe the REDUCE could operate by calling the function on pairs, in
parallel, until only one element remained in the list.

As I said in Section 3.4.3, I suspect I did not solve the exercise as Okasaki
planned.

3.5 Exercise 3.5

For this & the next few exercises, I translated Okasaki’s implementation of
binomial heaps ([2], page 24) to Lisp. It is in the file binomial-heap.lisp.

Define findMin directly rather than via a call to removeMinTree.
Here is my answer:

(defun findMin-3-5 (heap)
(assert (binomial-heap:is-heap heap))
(let ((minO (binomial-heap:root (first heap))))
(if (= (length heap) 1)
minO
;; else
(let ((minl (findMin-3-5 (rest heap))))
(if (xleq minO minl)
minO
;3 else

min1)))))

My answer & test programs for it are also in the file chapter03.lisp. Search
for “defun findMin-3-5”.

My guess is that the point of Exercise 3.5 was to improve the performance
of findMin.

Before running a performance comparison, let’s predict its results. Simply
removing findMin’s call to removeMinTree won’t change performance much; it’ll
just remove one function call, which will have little effect. A bigger difference
is that removeMinTree constructs lists as it returns, whereas the self-contained
findMin only deconstructs heaps. I suspect this could have a noticeable effect
on large heaps. So I predict that findMin-3-5 will be faster for large heaps.

Table 3.4 shows the results of the performance test. The rows are in pairs.
The first two rows compare £indMin & findMin-3-5 for heaps of 1,000 elements.
The next pair of rows compare them for heaps of 10,000 elements.

My findMin-3-5 is faster, so I presume that was the point of the exercise.

Here is the Lisp expression I used for the comparison:

26

CHAPTER 3. ANSWERS TO EXERCISES IN CHAPTER 3

function | count | seconds rate

findMin-3-5 1000 | 365778 | 3.04e+0 | 1.20e+5

findMin 1000 | 264264 | 3.00e+0 | 8.8le+4

findMin-3-5 10000 | 408572 | 3.00e+0 | 1.36e+5

findMin 10000 | 300420 | 3.00e+0 | 1.00e+5

findMin-3-5 50000 | 364576 | 3.00e+0 | 1.22e+5

findMin 50000 | 261948 | 3.00e+0 | 8.73e+4

Table 3.4: Performance comparison between findMin & findMin-3-5

(in-package "CHAPTER-03")

==> #<PACKAGE

(labels

"CHAPTER-03">

((init-heap (n)
(declare (type integer n))
(format t ""&~A: N is ~S" ’init-heap n)
;3 Jezus H. Krist. If I don’t have this COERCE, SBCL’s
;; compiler (yes, compiler, not during eval) croaks
;; because it thinks N will be of type
;; (OR (INTEGER 10000 10000) (INTEGER 1000 1000)), which
;; isn’t an integer. Dumbshit wannabe optimizing compiler.
(setq n (coerce n ’integer))
(do ((heap nil (binomial-heap:insert (random n) heap))
10 (1+ 1))
((>= i n) heap))))

(let ((heaplk (init-heap 1000))

(heap10k (init-heap 10000))

(heap50k (init-heap 50000)))
(with-open-file (strm "tab-ex0305.tex" :direction :output

:if-exists :rename-and-delete)

(cybertiggyr-test:ratetable

(1ist
(1ist
(list
(list
(list
(1list
(1list

"findMin-3-5 1000" #’(lambda () (findMin-3-5 heaplk)))

"findMin 1000" #’(lambda () (binomial-heap:findMin heapilk)))
"findMin-3-5 10000" #’(lambda () (findMin-3-5 heap10k)))
"findMin 10000" #’(lambda () (binomial-heap:findMin heap10k)))
"findMin-3-5 50000" #’(lambda () (findMin-3-5 heap50k)))
"findMin 50000" #’(lambda () (binomial-heap:findMin heap50k))))

strm))))

3.6. EXERCISE 3.6 27

3.6 Exercise 3.6

Most of the rank annotation in this representation of binomial
heaps are redundant because we know that the children of a node
of rank r have ranks r — 1,...,0. Thus, we can remove the rank
annotations from each node and instead pair each tree at the top-
level with its rank, i.e.,

datatype Tree = Node of Elem x Tree list
type Heap = (int X Tree) list

Reimplement binomial heaps with this new representation.

If T translate the suggested data structure from the Standard ML of Exer-
cise 3.6 to Lisp, I get this:

(defstruct xtree x (c nil))
(defstruct heapnode r tree)
;; A HEAP is a list of HEAPNODE.

When we re-write some of the binomial heap functions to work with the
new types, a general rule will be that functions which access the rank of a tree
must operate on HEAPNODES. The other functions which operate on trees can
continue to operate on trees. The functions which operate on heaps continue
to operate on heaps, though they may need changes in how they call the tree-
handling functions because now there is a difference between operating on a tree
& operating on a HEAPNODE.

Tree-handling functions which become HEAPNODE-handling functions are
rank & insTree.

The unchanged tree-handling function are root.

I still need a rank function which computes the rank of a tree instead of just
returning the rank that is stored in a HEAPNODE. I would be very interested in
a solution which did not recompute the rank of any trees.

The link function becomes a HEAPNODE function, but the easiest way to
implement the recursive part is with a tree-handling function. So link splits
into link-nodes, which operates on heap nodes, & link-trees, which operates
on trees.

It looks like all the other functions, which operate on heaps, will need changes
because, where they used to call tree-handling & other heap-handling functions,
they now also sometimes call HEAPNODE-handling functions.

My answer is in the file binomial-heap2.lisp.

If we assume that pointers, fixnums, & many other data types all occupy the
same amount of space (a word), then the original implementation of binomial
heaps stores the rank of a tree in each node. So each tree node requires space
for the payload & for the rank; that’s two words. This new implementation uses

28 CHAPTER 3. ANSWERS TO EXERCISES IN CHAPTER 3

n | trees | BH space | BH2 space

1 1 2 2

7 3 14 11

15 4 30 19
31 5 62 36
1023 10 2046 1033

Table 3.5: Comparison of the space requirements of the two binomial heap
implementations

function | count | seconds rate
BH 100 4284 | 3.00e+0 | 1.43e+3
BH2 100 616 | 3.00e+0 | 2.05e+2
BH 500 786 | 3.00e+0 | 2.62e+2

BH2 500 47 | 3.04e+0 | 1.55e+1
BH 1000 378 | 3.00e+0 | 1.26e+2
BH2 1000 14 | 3.11e+0 | 4.50e+0

Table 3.6: Performance comparison between original binomial heap implemen-
tation & the new one from Exercise 3.6

one word for each tree node & one word for each tree. Table 3.5 compares the
space requirements for the two implementations of binomial heaps.

The space savings for this new implementation of binomial heap could be
considerable.

Table 3.6 compares run-time performance for the two techniques.

So the first implementation of binomial heap, with the rank in each tree
node, is about twenty times faster than the second implementation, which saves
space by storing the rank per tree. I'd bet that the time difference has to do
with computing the rank of the trees, which the second implementation does
when it merges.

This is just one more data point in support of the heuristic that you can
always trade space for time. Nevertheless, I'm still open to the possibility of
a binomial heap implementation that stores the rank for each tree & never
computes the rank of the trees. If there is such an implementation, then I failed
Exercise 3.6.

(in-package "COMMON-LISP-USER")
==> #<PACKAGE "COMMON-LISP-USER">

(labels
((sort1l (1st)

(utils:heapsort 1lst nil #’binomial-heap:insert
#’binomial-heap:findMin
#’binomial-heap:deleteMin))

(sort2 (1st)

3.7. EXERCISE 3.7 29

(utils:heapsort 1st nil #’binomial-heap2:insert
#’binomial-heap2:findMin
#’binomial-heap2:deleteMin)))

(let ((1stlic (loop for i from 1 to 100 collect (random 100)))
(1st5c (loop for i from 1 to 500 collect (random 500)))
(1st1k (loop for i from 1 to 1000 collect (random 1000))))

(with-open-file (strm "tab-ex0306b.tex" :direction :output
:if-exists :rename-and-delete)
(cybertiggyr-test:ratetable
(list

(1ist "BH 100" #’(lambda () (sortl 1lstic)))
(1ist "BH2 100" #’(lambda () (sort2 1lstilc)))
(1ist "BH 500" #’(lambda () (sortl 1lstbc)))
(1ist "BH2 500" #’(lambda () (sort2 lst5c)))
(list "BH 1000" #’(lambda () (sortl lstik)))
(1ist "BH2 1000" #’(lambda () (sort2 lstik))))

strm))))

3.7 Exercise 3.7

One clear advantage of leftist heaps over binomial heaps is that
findMin takes only O(1) time, rathern than O(logn) time. The
following functor skeleton improves the running time of £indMin to
O(1) by storing the minimum element separately from the rest of the
heap.

functor ExplicitMin (H : Heap) : Heap =
struct

structure Elem = H.Elem
datatpye Heap = E or NE of Elem.T X H.Heap

end

Note that this functor is not specific to binomial heaps, but rather
takes any implementation of heaps as a parameter. Complete this
functor so that £indMin takes O(1) time, & insert, merge, & deleteMin
take O(logn) time (assuming that all four take O(logn) time or bet-
ter for the underlying implementation H.)

The past few exercises have made me wish I had defined an interface for
heaps before doing all these exercises. I chose not to do that because, since
all these heap implementations us NIL to indicate an empty heap, it’s not just
a case of creating an interface in CLOS. So I stand by my choices, but this
Exercise 3.7 sure makes me reconsider it. (See Section 7.1.)

Here’s an answer to Exercise 3.7 in pseudocode:

30 CHAPTER 3. ANSWERS TO EXERCISES IN CHAPTER 3

1. We store the minimum element along with the heap.
2. findMin just returns that element, so it runs in O(1) time.

3. insert compares the new element to the stored minimum element. If
the new element is less, it stores the new element as the minimum ele-
ment. This extra work is O(1), which is probably less than H’s insert,
so ExplicitMin’s insert will run in the same time at H’s insert.

4. deleteMin must find the next minimum by using H’s findMin. This is a
bummer, but I think it’s necessary. If H’s deleteMin & findMin both run
in O(logn), then ExplicitMin’s deleteMin will run in O(2 x logn), which
is still O(logn) as required by Exercise 3.7.

Let’s do it with a Lisp macro. My answer is in the file chapter03.lisp. Search
for “Exercise 3.7”.

(defmacro def-explicit-min (basename insert findMin deleteMin)
(let ((xmaker (intern (format nil "“A-"A" ’make ,basename)))
(xmin (intern (format nil "~“A-"A" ,basename ’min)))
(xheap (intern (format nil "“A-"A" ,basename ’heap)))
(xinsert (intern (format nil "“A-"A" basename ’insert)))
(xfindMin (intern (format nil "“A-"A" basename ’findMin)))
(xdeleteMin (intern (format nil "“A-"A" basename ’deleteMin)))
(arg-x (gensym))
(arg-heap (gensym))
(tmp (gensym)))
¢ (progn
(defstruct ,basename min heap)
(defun ,xinsert (,arg-x ,arg-heap)
(if ,arg-heap
(,xmaker :min (if (xleq ,arg-x (,xmin ,arg-heap))
,arg-x
(,xmin ,arg-heap))
:heap (,insert ,arg-x (,xheap ,arg-heap)))
(,xmaker :min ,arg-x :heap (,insert ,arg-x nil))))
(defun ,xfindMin (,arg-heap)
(declare (type ,basename ,arg-heap))
(,xmin ,arg-heap))
(defun ,xdeleteMin (,arg-heap)
(declare (type ,basename ,arg-heap))
(let ((,tmp (,deleteMin (,xheap ,arg-heap))))
(,xmaker :min (,findMin ,tmp) :heap ,tmp)))
(1ist ,xmaker ,xmin ,xheap ,xinsert ,xfindMin
,xdeleteMin ,arg-x ,arg-heap ,tmp))))

3.8. EXERCISE 3.8 31

3.8 Exercise 3.8

Prove that the mazimum depth of a node in a red-black tree of
size n is at most 2|log(n + 1)].

The proof is algebraic.

1. Let S be the length of the shortest path to a leaf in the tree.
2. Then 25 < N — 1, the number of nodes in the tree.

$ < [log(N — 1))

Let M be the length of the longest path to a leaf in the tree.

M < 2.8, according to the rules of red-black trees.

A

M
L <s

M <5< [log(N —1)]

=

8 M <2 |logN —1|

3.9 Exercise 3.9

Write a function fromOrdList of type Elem list — Tree that
converts a sorted list with no duplicates into a red-black tree. Your
function should run in O(n) time.

To test my answer to this problem, I had to implement red-black trees in
Lisp. That implementation is in file red-black-set.lisp. (fixme: As of 2006
January 1, it’s not finished yet.)

Wait. That’s not true. I couldn’t implement the BALANCE function in a way
that wasn’t ugly. Okasaki’s implementation in Standard ML is nice, but I've
never seen another red-black tree implementation I liked, € I couldn’t figure it
out in Lisp. So screw it. I reject red-black trees! I renounce them!

So now I turn to the next chapter.

32

CHAPTER 3. ANSWERS TO EXERCISES IN CHAPTER 3

Chapter 4

Answers to Exercises in
Chapter 4

A part of Chapter 4 of [2] is an implementation of a delayed-evaluation streams
package. I implemented that in Lisp in the file ztream.1lisp, which is in Ap-
pendix D & is online at http://cybertiggyr.com/gene/amo/ztream.lisp.

4.1 Exercise 4.1

Use the fact that force ($e) is equivalent to e to show that these
two definitions of drop are equivalent.

The two implementations of drop, which I will rename to dropA & dropB,
are:

fun lazy dropA (0, s) = s
| dropA (n, $Nil) = $Nil
| dropA (n, $Cons (x, s)) = dropA (n - 1, s)

fun lazy dropB (n, s) =
let fun drop’ (0, s) =s
| drop’ (m, $Nil) = $Nil
| drop’ (n, $Cons (x, s)) = drop’ (n - 1, s)
in drop’ (n, s) end

By comparing dropA to the drop’ which is within dropB, anyone can see
that dropA is equivalent to drop’. So the task is to show that dropB’s use of
drop’ is equivalent to the stand-alone function dropA.

We'll use the rule from page 33 in [2] which says that

fun lazy f p = e

33

34 CHAPTER 4. ANSWERS TO EXERCISES IN CHAPTER 4

is equivalent to
fun f x = $case x of p = force e
By applying that rule to dropB, we get

fun dropB (x, y) =
$case (x, y) of (n, s) =
force (let fun drop’ (0, s) = s
| drop’ (m, $Nil) = $Nil
| drop’ (n, $Cons (x, s)) = drop’ (n - 1, s)
in drop’ (n, s) end)

Now we employ the fact that force ($e) is equivalent to e. So dropB (n,
s) is equivalent to

fun drop’ (0, s) = s
| drop’ (m, $Nil) = $Nil
| drop’ (n, $Cons (x, s)) = drop’ (n - 1, s)

And, like T already said, it’s obvious that drop’ is equivalent to dropA.

4.2 Exercise 4.2

Implement insertion sort on streams. Show that extracting the
first k elements of sort xs takes only O(n - k) time, where n is
the length of xs, rather than O(N?) time, as might be expected of
insertion sort.

Notice that an obvious implementation of a delayed selection sort has this
same O(n - k) property, but for me, an implementation of insertion sort with
this property is not obvious. In fact, I wasn’t convinced it was possible until I
did it.

After much thinking & experimentation, here is the INSERTION-SORT func-
tion I wrote. It’s also in Appendix D.

(defun zinsert (x z lessp)
"Insert X into Z in order, returning a new ZTREAM."
(declare (type function lessp))
(let ((z0 (force z)))
(symbol-macrolet ((head (car z0))
(tail (cdr z0)))
(cond ((null z0) (zpush x z))
((funcall lessp x head) (zpush x 2z))
(t (zpush head
;3 This suspension is the critical part.
(suspend zinsert-0
(force (zinsert x tail lessp)))))))))

4.2. EXERCISE 4.2 35

N K | early count | later count | rel. O(N - K) | rel. O(N?)
256 1 255 255 1.00 0.00
256 | 128 255 24385 0.74 0.37
256 | 256 255 31360 0.48 0.48
512 1 511 511 1.00 0.00
512 | 256 511 97479 0.74 0.37
512 | 512 511 128785 0.49 0.49

1024 1 1023 1023 1.00 0.00
1024 | 512 1023 386882 0.74 0.37
1024 | 1024 1023 017716 0.49 0.49

Table 4.1: Some performance measurements of my lazy insertion sort imple-
mentation

(defun insertion-sort (z lessp)

"Return a new ZTREAM which is a sorted version of Z. If
you remove the first K elements from the new ZTREAM, the
cost will be O(K * N), where N is the length of Z and also
the length of the new ZTREAM."

(declare (type function lessp))

(let ((2z0 (force z)))

(if (null zO)
;; Empty ZTREAM is already sorted.
z
;; Else
(let ((head (car z0))
(tail (insertion-sort (cdr z0) lessp)))
(zinsert head tail lessp)))))

To verify that my lazy insertion sort behaves as Exercise 4.2 requires, I wrote
a function called PERF-INSERTION-SORT, which is in Appendix D. Table 4.1
shows the output of PERF-INSERTION-SORT.

In Table 4.1, the N column shows the length of the ZTREAM which we’ll
sort. The K column shows the number of items we’ll extract from the sorted
ZTREAM. We always use three values of K; they are 1, %, & N.

We generate a new ZTREAM of N random numbers for every combination
of N & K. Alternatively, we could have generated a new ZTREAM for every N,
independant of K.

The early count column shows the number of comparisons the sorting
algorithm performed before we extract any items from the sorted ZTREAM. The
later count column shows the number of comparisons that have been performed
after extracting K items.

The rel. O(N - K) column shows how much work (i.e., comparisons) my
lazy insertion sort performed relative to the O(N - K) target value claimed by

36 CHAPTER 4. ANSWERS TO EXERCISES IN CHAPTER 4

Exercise 4.2.

The rel. O(N?) column shows how much work my lazy insertion sort per-
formed relative to the O(N?) that a monolithic insertion sort would theoretically
have done.!

You might notice that the only suspension in my lazy insertion sort is in
ZINSERT. The suspension in ZINSERT is critical to achieve the behaviour that
Exercise 4.2 requires, but a suspension around the recursive call in INSERTION-
SORT is optional.

I generated Table 4.1 without the suspension. We can see from the table
that INSERTION-SORT does O(N) comparisons before it returns & that extracting
the first item from the new ZTREAM is immediate. With the suspension in
INSERTION-SORT, INSERTION-SORT does no comparisons, but extracting the first
element from the sorted ZTREAM does O(N) comparisons. In other words, with
the suspension, Table 4.1 would show the same amount of work except that the
“early count” column would always be zero.

Here is the INSERTION-SORT function with the suspension:

(defun insertion-sort (z lessp)

"Return a new ZTREAM which is a sorted version of Z. If
you remove the first K elements from the new ZTREAM, the
cost will be O(CK * N), where N is the length of Z and also
the length of the new ZTREAM."

(declare (type function lessp))

(let ((2z0 (force z)))

(if (null zO)

;; Empty ZTREAM is already sorted.

z
;; Else
(suspend insertion-sort-0

(let ((head (car z0))
(tail (insertion-sort (cdr z0) lessp)))
(force (zinsert head tail lessp)))))))

If you embrace suspensions fully, you’d probably use the version with the
suspension, but since suspensions have an overhead cost; since it seems likely
that if you sort a collection, you’ll want at least the first element from it; & since
the cost of fetching that first element is O(N), I choose to forgo the suspension
in INSERTION-SORT.

Remember that the suspension within ZINSERT is criticall You can’t do
without it.

IWhen K = N, this final column is roughly % because insertion sort on randomized lists,

2
which is how I generated the data to sort, is close to O(NT)

Chapter 5

Fundamentals of
Amorization

According to Okasaki, the basic way to make a persistent queue in a functional
language is with two lists: the front & the rear. Insert into the queue by
pushing onto the rear. Delete from the queue by removing from the front. We
must sometimes reverse the rear & use it as the new front.

I implemented these queues as class “BATCHQ” in the file amo.lisp. The
source code is in Appendix C.

The worst-case cost of tail is O(n), but Okasaki proves that the amortized
cost of tail is O(1).

Recall the second equation from page 40 in [2]; it says Egzlai > Egzlti. If
I understand amortized cost correctly (& I'm not sure I do), the (theoretical)
amortized performance is an upper bound on the actual performance. Since the
amortized cost for each of SNOC, HEAD, & TAIL is O(1), the amortized cost of
any sequence of those operations will be O(k - m), where m is the length of the
sequence & k is some constant. Since the amortized cost is an upper bound,
the actual performance should be no worse than O(k - m).

Let’s do some measurements.

We'll perform a lengthy sequence of operations randomly selected from
(sNOC, HEAD, & TAIL). When the queue is empty, HEAD will return NIL in-
stead of signalling an error. There is also a risk of overflowing memory with a
large queue, but we’ll take that risk.

Periodically during the sequence (like every 1,000 operations), we’ll print
the theoretical performance (which sill be the number of operations so far),
the actual performance between the two (measured in real time), & the radio
between the two. If the amortized performance, which is O(k - m), is an upper
bound on the actual performance, then the ratio will approximate k or it will
decrease. The ratio definitely should not increase in the long run.

Here is a function which performs this performance test & prints a plain text
table of the results. Table 5.1 shows the results of “(batchq-perf 10000000)”.

37

38 CHAPTER 5. FUNDAMENTALS OF AMORIZATION

operations | amo’d cost | real cost ratio
1,000,000 | 1,000,000.00 2.20 | 2.20e-6
2,000,000 | 2,000,000.00 4.43 | 2.21e-6
3,000,000 | 3,000,000.00 6.68 | 2.23e-6
4,000,000 | 4,000,000.00 8.89 | 2.22e-6
5,000,000 | 5,000,000.00 11.30 | 2.26e-6
6,000,000 | 6,000,000.00 13.49 | 2.25e-6
7,000,000 | 7,000,000.00 15.70 | 2.24e-6
8,000,000 | 8,000,000.00 17.84 | 2.23e-6
9,000,000 | 9,000,000.00 20.07 | 2.23e-6
10,000,000 | 10,000,000.00 22.34 | 2.23e-6

Table 5.1: The results of “(batchg-perf 10000000)”

From those results, I'd say that the real performance is about O(k - n), where
k = 2.23 x 10~ 5second.

;3 You must load "loadall.lisp" first.
(in-package "AMO")

(labels
((make-q O
"Make a big queue."
(let ((q (make-batchq)))
(dotimes (i 10000) (setq q (snoc q (random 100))))
Q)
(random-op (q)
(case (random 3)
(0 (snoc q (random 100)))
(1 (head q) q)
(2 (tail @))))
(amo-cost (i)

"Return amortized cost. Because the three
operations we’re using all have an amortized
cost of 0(1), the total amortized cost is
just the number of operations. That’s I."

i)

(real-cost (start)

"Return the real cost. The real cost is the
amount of real time we have been running."
(/ (- (get-internal-real-time) start)

internal-time-units-per-second)))

(defun batchg-perf (&optional (m 100000))

39

"M is the number of operations to perform."
(do ((q (make-q) (random-op q))
(start (get-internal-real-time))
(i1 (1+ 1))
((>im)q)
;3 Every once in a while, print a line of
;; the table.
(when (zerop (mod i (/ m 10)))
(format t "“&"9D"{ ~9,2F"} ~,2E" i
(list (amo-cost i) (real-cost start))
(/ (real-cost start) (amo-cost i)))))))

40

CHAPTER 5. FUNDAMENTALS OF AMORIZATION

Chapter 6

Amortized Queues
Performance Comparison

Okasaki spends a lot of time discussing queues in [2], especially amortized queues
in Chapter 6. I like doing performance comparisons, so let’s compare the per-
formances of those queues & some others.

6.1 Interface to Queues
Each type of queue supports this interface, which I have borrowed from [2]:

snoc (q x) Insert item z into the queue. Return the new queue.

head (q) Return the item which is in the front of the queue. Return NIL for
an empty queue.

tail (q) Return a new queue which is equivalent to ¢ with its head cut off.
isEmpty (q) Return true! if & only if ¢ is empty.

I chose to express this interface using CLOS because I want a single interface
with multiple implementations.

6.2 Implementsions of Queues
The implementsions of queues are:
e naive

e batch

L«True” is any non-NIL value.

41

42 CHAPTER 6. AMORTIZED QUEUES PERFORMANCE COMPARISON

e amortized via the banker’s algorithm
e amortized via the physicist’s algorithm

All of the implementations are in amo.lisp.

6.2.1 Naive Queues

A naive queue is implemented as a single list. Retrieving or removing the
front element is quick; it is the CAR of the list, but inserting a new element is
expensive. To insert a new element, we must APPEND to the list, creating an
entirely new queue each time.

I call this type of queue naive because the implementation is obvious & far
less efficient than other possibilities.

I included naive queues as a sort of control group, a baseline, & out of
curiosity.

6.2.2 Batch Queues

A batch queue is implemented with two lists. The first list is the front, & the
second list is the rear. To insert into the queue, push the item onto the rear.
The head of the queue is the FIRST of the front list if that list is not empty;
otherwise, it’s the FIRST of the reverse of the rear list.

With batch queues, insertion is O(1). Accssing he front element is O(1) if
the front list is non-empty; otherwise, it’s O(n).

The functions for “two lists” queues are in amo.lisp. All of their names begin
with “listsq”. All of those functions are memoized.

Okasaki mentions that this implementation of queues is common & reason-
able in functional languages.

6.2.3 Banker’s Queues

Okasaki derives this implementation of queues using the Banker’s Method of
amortized analysis in Section 6.3.2 of [2].

6.2.4 Physicist’s Queues

Okasaki derives this implementation of queues using the Physicist’s Method of
amortized analysis in Section 6.4.2 of [2].

6.3 The Performance Results
The performance test works like this:
1. For each size N = 2% k = 1,2, ..., then for each queue type T,

(a) Create an empty queue of type T & place N items in it.

6.3. THE PERFORMANCE RESULTS 43

N [NAIVEQ | BATCHQ | BANKQ | PHYSQ
1] 2.85x10° | 2.97 x 10° | 2.92 x 10° | 3.00 x 10°
21 1.97x 107 [1.98 x 10° | 2.83 x 10° | 2.79 x 10°
4] 1.77x10* | 2.08 x10° | 1.71 x 10° | 2.44 x 10°
8| 5.78 x 105 | 2.74 x 10T | 2.75 x 10° | 2.86 x 10°

16 | 6.66 x 10> | 1.97 x 105 | 1.51 x 105 | 2.15 x 10°

32 | 9.32 x 102 1.99 x 10° | 2.21 x 10° | 2.48 x 10°
64 | 4.92 x 10° 1.71 x 105 | 1.45 x 10° | 2.21 x 10°
128 | 1.63 x 103 2.21 x 10° | 1.89 x 10° | 2.21 x 10°
256 | 2.72 x 107 1.21 x 105 | 1.66 x 10° | 2.33 x 10°
512 | 2.10 x 10? 2.16 x 10° | 2.05 x 10° | 2.36 x 10°
1024 | 3.78 x 102 7.48 x 10 | 1.30 x 10° | 1.95 x 10°
2048 | 2.46 x 109 3.21 x 10% | 2.36 x 10° | 1.95 x 10°

Table 6.1: The performance results with memoization

(b) Do a bunch of insert/delete operations on the queue. We always do a
pair of operations: One insert, then one delete. Immediately before
the insert, there are N items in the queue. Immediately after the
delete, there are again N items in the queue.

(c) Report the number of insert/delete operation pairs per second for
queue type T of size N.

Table 6.1 shows the performance results with memoization. I obtained this
table by loading amo.lisp into SBCL, & then evaluating these expression:

(in-package "AMO")

=> #<PACKAGE "AMO">

(setq *time-test2-max-expt* 11)
=> 11

(make-memos)

=> (MAPPEND blah blah blah ...)
(time-test2 "memo.tex")

See Section 6.4 for a discussion of why the performance of naie queues
dropped suddently at N = 2,048 & why I didn’t run the comparison for larger
values of N.

In spite of the performace analyses in Okasaki’s [2], T see little difference in
the performances. I presume this is the benefit of memoization. Let’s run the
performace tests without memoization to test that idea.

To run the performance comparion without memoization, I started SBCL &
evaluated these expressions:

(in-package "AMO")
=> #<PACKAGE "AMO">

44 CHAPTER 6. AMORTIZED QUEUES PERFORMANCE COMPARISON

N [NAIVEQ | BATCHQ | BANKQ | PHYSQ
1] 1.93x10° | 1.73x10° | 6.36 x 10* | 8.79 x 10*
2
4

1.84 x 10° | 1.79 x 10° 5.70 x 10* | 1.10 x 10°
1.69 x 10° | 1.81 x10° | 5.07 x 10* | 1.17 x 10°
8 1.49x 105 | 1.84x10° | 4.60 x 10% | 1.23 x 10°

16 | 1.19 x 10° | 1.91 x 10° | 4.35 x 10* | 1.23 x 10°

32 | 890 x10% | 1.94x10° | 4.31 x 107 | 1.25 x 10°

64 | 6.11 x 10% | 2.06 x 10° | 4.22 x 10% | 1.26 x 10°
128 | 3.61x 10| 2.03x10° | 4.18 x 10% | 1.25 x 10°
256 | 1.95 x 10* | 2.08 x 10° | 4.13 x 10* | 1.26 x 10°
512 | 1.01 x 10* | 2.07 x 10° 4.05 x 10* | 1.24 x 10°
1024 | 5.05 x 103 | 2.05 x 10° | 4.04 x 10* | 1.27 x 10°
2048 | 2.66 x 103 | 2.09 x 105 | 3.74 x 10T | 1.27 x 10°
4096 | 1.30 x 103 | 1.99 x 10° | 2.95 x 10* | 1.16 x 10°
8192 | 6.43 x 102 | 1.99x 10° | 8.65 x 10° | 1.15 x 10°
16384 | 2.96 x 102 | 2.07 x 10° | 5.53 x 10° | 1.28 x 10°
32768 | 1.36 x 102 | 1.89x10° | 1.02 x 10° | 1.10 x 10°
65536 | 5.89 x 10T | 1.74x 10° | 3.40 x 10~1 | 1.25 x 10°

Table 6.2: The performance results without memoization

;5 I did not do (setq *time-test2-max-expt* 12)
;3 I did not do (make-memos)
(time-test2 "nomemo.tex")

The results are in Table 6.2..

6.4 Observations about Memoization & Mem-
ory Use

I wanted to run the test for larger queues, but the memoized queues exhausted
memory with anything larger. It turned out that the naie queues were the
memory-consuming culprit because each memoized item contains a fresh queue;
there is no re-use between the queues. If each queue element requires 1 word
for the CONS’s CAR, 1 word for the CONS’s CDR, & one word for the payload (&
it probably requires more, for type information at least), then each list element
requires 3 words, & a list of N elements requires 3N words. If a word is 4 octets,
then a list of 4,096 elements requries 3-4096-4 — 49152 bytes, & the memoization
cache stores all lists from length 1 to length 4,096. So to memoize lists of length
4,096, we memoize Z?\?iﬁl N — 8,390,656 elements. If each element is 3 words
of 4 octets each. .. Yeah, that’s why it used too much memory.

6.5. ANALYSIS 45

6.5 Analysis

I'm kind of stunned. Let’s look at the memoized results first (Table 6.2).

If you accept the memory size explanation for the abysmal performance
of nalve queues, then the performances were roughly constant as N increased.
Batch queues had a few inefficient moments, but for the most part, batch,
banker’s, & physicist queues had constant & equivalent performances. It’s pos-
sible that batch queues suffer from a minor version of the memory use prob-
lem that afflicts naive queues. My main conclusion from the memoized results
is that, if you have enough memory to cache all results, the implementation
doesn’t make much difference if it makes any difference at all.?

In the non-memoized test, naive queues showed O(N) performance, batch
queues showed O(log N), banker’s queues showed roughly O(N), & physicist’s
queues showed roughly O(log log N)? performance. Of those, the fastest was
batch queues, then physicist’s queues, then naive queues, then banker’s queues.

Banker’s queues were even slower than naive queues. How could this be?
Some explanations include:

e When I translated Okasaki’s banker’s queues from Standard ML to Com-
mon Lisp by hand, I made a mistake & broke the algorithm.

e Banker’s queues had the best performance in the memoized tests. If the
difference between memoized banker’s queues & the second-fastest mem-
oized queues was not noise, then it’s possible that banker’s queues are
faster in the presense of memoization by reducing the number of distinct
queues, thereby keeping the cache’s hash table size small & it’s lookup
performance high.

e The test I used shows banker’s queues in a bad case. If so, this was
unintentional on my part.

e It’s okay if the overall performance of banker’s queues is worse than a bad
algorithm’s performance because amortized cost isn’t the same as worst-
case cost. fizme: I must re-study the idea of amortized analysis to see if
this is possible.

Table 6.3 shows the Big-O performance I measured & the theoretical per-
formance from [2]. (The theoretical performance for naive queues is my own
S.W.A.G., not from [2].) The theory column is the maximum of the work
for sNOC & the work for TAIL because my performance test counted pairs of
SNOC/TAIL operations.

The costs measured by my performance tests aren’t exactly the same as the
theoretical cost. Explanations for this discrepancy include:

2For what it’s worth, the same memoized test on clisp on Microsloth Winders showed even
closer & more consistent performances.
3Log (log N)?! Am I sure about this? fixme: What is the predicted performance?

46 CHAPTER 6. AMORTIZED QUEUES PERFORMANCE COMPARISON

implementation | theory | measured

nalve N N
batch N log N
banker’s N N

physicist’s log N log log N

Table 6.3: The Big-O performance I measured & the theoretical performance
from [2]

My performance tests counted iterations over clock time whereas theoret-
ical performance analysis depends on steps.

The performance tests are unfair to some of the queue implementations,
or they measured the wrong thing.

e I misunderstood the meaning of amortized cost & analysis.

e [implemented the queues incorrectly.

The actual speed of batch queues (1.74 x 10° SNOCTAIL pairs per second at
elements) in the non-memoized run, which was the fastest among the queue
implementations, supports Okasaki’s claim on page 44 that “these queues cannot
be beat for applications that do not require persistence & for which amortized
bounds are acceptable”.

216

Chapter 7

Other Observations

7.1 NIL & object-oriented programming

If you use NIL as an empty collection, then you can’t use a CLOS interface for
multiple implementations of that interface. Here’s an example that shows why:

1. Think about an interface for heaps (which Okasaki’s Chapter 3 discusses
in depth). It might have INSERT, FINDMIN, & DELETEMIN in its interface.

2. Assume we want NIL to be an empty heap.

3. Imagine that you implement one kind of heap. With CLOS, it’s easy to spe-
cialize methods on types & on values, so you can implement the methods
to use NIL for empty heaps. It works fine.

4. Now imagine that you want to implement another kind of heap using the
same interface. Your new FINDMIN & DELETEMIN methods are probably
fine because they assume the heap is not empty, but what about INSERT?
When you insert into a non-empty heap, you can specialize an INSERT
method on the type, but INSERT is already specialized for NIL on the
previous kind of heap.

7.2 Nil for empty & special cases

It seems that using NIL for empty collections makes it easy to use the collection
in general & easy to implement the collection from within, but collections which
wrap other collections must treat NIL as a special case.

This idea is from Exercise 3.7 (Section 3.7.

47

48 CHAPTER 7. OTHER OBSERVATIONS

7.3 Memoization & memory

If you memoize, memoize everything. Otherwise, you eat too much memory
because the low-level functios, such as CONS & APPEND, are not memoized.

7.4 Lisp & suspensions

You can implement suspensions in Lisp, but I would not want to design amor-
tized algorithms using suspensions in Lisp. With suspensions in Lisp, the lan-
guage seems to get in the way.

So where suspensions are concerned, Lisp is to a language with suspensions as
an Algol-descendant language is to Lisp where lists (& code-as-data & macros &
higher-order functions) are concerned. In other words, sure, you can implement
suspensions in Lisp, but the syntax gets in the way of the algorithms, just like
how you can implement lists (higher-order functions) in C++, but then the
syntax gets in the way of the algorithms. So if you are writing an algorithm
that uses higher-order functions, you are better off writing it in Lisp & then
translating to C++. If you are writing an amortized algorithm, maybe you are
better off doing it in Okasaki’s Standard ML with Suspensions, then translating
to Lisp.

Chapter 8

The Source Code

e amo.lisp

e auxfns.lisp

e binomial-heap.lisp
e bst.lisp

e chapter(02.lisp

e chapter03.lisp

e lazy.lisp

e loadall.lisp

e ordered.lisp

e red-black-set.lisp
e utils.lisp

e ztream.lisp

It requires the memoization functions from Paradigms of Artificial Intelli-
gence Programming: Case Studies in Common Lisp [1], by Peter Norvig. They
are available elsewhere, or you can use local copy at CyberTiggyr.COM.

49

a0

CHAPTER 8. THE SOURCE CODE

Appendix A

Other File Formats

e This document is available in multi-file HTML format at
http://cybertiggyr.com/gene/amo/.

e This document is available in Pointless Document Format (PDF) at
http://cybertiggyr.com/gene/amo/amo.pdf.

o1

92

APPENDIX A. OTHER FILE FORMATS

Appendix B

Some comments about
suspend & force

Here is part of an e-mail message I wrote to a friend who asked about suspend
& force in Lisp.

Date: Sunday, 2006 March 12
Suspend & Force aren’t part of Common Lisp. They are techniques
that you can implement in Lisp. They are well-known; for example,
they are discussed in Norvig’s “Paradigms of Al Programming: Case
Studies in Common Lisp” [1].

My implementation of them contains some “counters” to help
estimate performance by letting you track how many suspensions
were created & how many were evaluated.

SUSPEND takes a chunk of code & gives you a function which
returns two values:

1. The value from evaluating the suspended chunk of code, &

2. Another function which is the suspension of the next chunk of
code.

FORCE just evaluates the chunk of code. In Lisp, you could just
FUNCALL the suspension, but I (& other programmers) like to have
a function called FORCE to make it easier to see that the function
you are funcalling is supposed to be a suspension. (Basically, a small
aide to self-documentation.)

Suspensions are an important technique when you write algo-
rithms which are lazy (i.e., which amortize their costs). There seem
to be two types of benefits from suspensions, depending on how you
use them or how you look at them:

1. Traditional (i.e., “monolithic”) algorithms can be implemented
with suspensions, usually with trivial effort, & the resulting
algorithm will do less work if you do not need all of its results.

93

54 APPENDIX B. SOME COMMENTS ABOUT SUSPEND & FORCE

2. Algorithms which must be incomprehensively complicated in
monolithic form to be efficient can be refreshingly simple if you
implement them with suspensions.

In the “Purely Functional Data Structures” book [2], Okasaki
spends about 90 percent of the space in discussion of techniques
which use suspensions & in analysis of amortized algorithms. It’s
really cool stuff!

Interestingly, though Lisp does not have suspensions, it’s easy to
implement them in Lisp. I've heard that Scheme does have suspen-
sions. Standard ML (which Okasaki uses in the book), does not, but
he adds it to Standard ML with a simple extension of the syntax.

I notice that it is easier to analyze the amortized algorithms
in Okasaki’s extended Standard ML than in Lisp with SUSPEND &
FORCE. Does this suggest that fully functional languages (such as
Standard ML) are to Lisp as Lisp is to Algol-descendant imperative
languages (such as Java, C++, C#, C, Pascal)???

Appendix C

Source Code (amo.lisp)

This source code is also online at http://cybertiggyr.com/gene/amo/amo.1lisp.

;53 —%— Mode: Lisp —*-

;5; $Header: /home/gene/library/website/docsrc/amo/RCS/amo.lisp,v 395.1 2008/04/20 17:25:45 gene Exp $
;35 Copyright (c) 2005 Gene Michael Stover. All rights reserved.

;53 This program is free software; you can redistribute it and/or modify
;35 it under the terms of the GNU Lesser General Public License as

;55 published by the Free Software Foundation; either version 2 of the
;35 License, or (at your option) any later version.

;35 This program is distributed in the hope that it will be useful,
;55 but WITHOUT ANY WARRANTY; without even the implied warranty of
;33 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;33 GNU Lesser General Public License for more details.

;35 You should have received a copy of the GNU Lesser General Public

;55 License along with this program; if not, write to the Free Software
;33 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
;35 USA

(defpackage "AMO"
(:use "COMMON-LISP"))
(in-package "AMO")

;33 Wrappers around some Common Lisp functions so I can memoize
;55 these wrappers, not the Common Lisp functioms.

(defun mappend (1st x) (append 1lst x))

(defun mcons (x y) (cons x y))

35

96 APPENDIX C. SOURCE CODE (AMO.LISP)

(defun mfirst (cons) (first coms))

(defun mlist (&rest rest) (apply #’list rest))
(defun mrest (cons) (rest comns))

(defun mreverse (1lst) (reverse 1st))

(defun make-memos ()
(mapc #’common-lisp-user::memoize
’ (mappend mcons mfirst mlist mrest mreverse

xsnoc xtail
make-naiveq
make-batchq batchqg-check
make-bankq bankqg-check
make-physq physq-checkw physqg-check
lazy:suspend lazy:force)))

;33 INTERFACE TO QUEUES
;53 Every queue supports functions to do these things:

;53 make () : Return an empty, queue.

;55 insert (x q) : Insert item X into the queue. Return the
;33 new queue.

;53 front (q) : Return the item which is in the front of the queue.
;55 Return NIL for an empty queue.

;53 delete (q) : Delete the item which is in the front of the queue.
;;; Return the new queue.

;55 isEmpty? (q) : Return NIL if the queue is not empty. Return
;55 true (i.e., non-NIL) if the queue is empty.

(defgeneric isEmpty (q)
(:documentation "Return true if & only if Q is empty."))

(defgeneric snoc (q x)
(:documentation "Append item X to the queue. Return a new queue."))

(defgeneric head (q)
(:documentation "Return the first item in the queue. If the queue is
empty, you get NIL."))

(defgeneric tail (q)
(:documentation "Return a new queue which is like Q with its head

cut off. If Q is empty, you get an empty queue."))

(defun xtail (q) (tail q))

o7

(defun xsnoc (q x) (snoc q x))

;53 NAIVE QUEUE
;53 This queue is a single list. To insert, we APPEND. To DELETE,
;55 we return REST. The FRONT is the FIRST.

39

(defclass naiveq ()
((1st :initarg :1lst :accessor naiveg-lst)))

(defun make-naiveq (&optional (1lst nil))
(make-instance ’naiveq :1lst 1lst))

(defmethod isEmpty ((q naiveq))
(endp (naiveq-lst q@)))

(defmethod snoc ((q naiveq) x)
(make-naiveq (mappend (naiveg-lst q) (mlist x))))

(defmethod head ((q naiveq))
(nfirst (naiveq-lst q)))

(defmethod tail ((q naiveq))
(make-naiveq (mrest (naiveq-lst q))))

;33 LISTS QUEUE

;55 According to Okasaki in "Purely Functional Data Structures",
;55 the basic way to make a persistent queue in a functional

;55 language is with two lists: the front & the rear. Insert into
;55 the queue by pushing onto the rear. Delete from the queue by
;55 removing from the front. We must sometimes reverse the rear &
;35 use it as the new front.

(defclass batchq ()
((front :initarg :front :accessor batchqg-front)
(rear :initarg :rear :accessor batchg-rear)))

(defun make-batchq (&optional (front nil) (rear nil))
(make-instance ’batchq :front front :rear rear))

(defun batchqg-check (q)
(if (endp (batchg-front q))
(make-batchq (mreverse (batchg-rear q)) ()
Q)

(defmethod snoc ((q batchq) x)

98 APPENDIX C. SOURCE CODE (AMO.LISP)

(make-batchq (batchq-front q) (mcons x (batchg-rear q))))

(defmethod head ((q batchq))
(mfirst (batchg-front (batchg-check q))))

(defmethod tail ((q batchq))
(setq q (batchg-check q))
(make-batchq (mrest (batchg-front q)) (batchg-rear q)))

;335 BANKER’S QUEUES : Amortized queues using the banker’s method
;55 from Okasaki, page 65

;55 A banker’s queue is a list of 4 things.

;55 FIRST is the length of the FRONT.

;53 SECOND is a suspension for the FRONT. Evaluate it to get the fromnt.
;55 THIRD is the length of the REAR.

;55 FOURTH is the suspension for the REAR.

(defclass bankq ()
((lenf :initarg :lenf :accessor bankg-lenf)
(f :initarg :f :accessor bankqg-f)
(lenr :initarg :lenr :accessor bankq-lenr)
(r :initarg :r :accessor bankqg-r)))

(defun make-bankq (&optional (lenf 0) (f (ztream:make-ztream))
(lenr 0) (r (ztream:make-ztream)))
(make-instance ’bankq :lenf lenf :f f :lenr lenr :r r))

(defun bankg-check (lenf f lenr r)
(if (<= lenr lenf)
(make-bankq lenf f lenr r)
;; Else, the rear is too big, so we reverse it & append
;; to the front -- lazily.
(make-bankq (+ lenf lenr) (ztream:zappend f (ztream:zreverse r))
0 (ztream:make-ztream))))

(defmethod isEmpty ((q bankq))
(and (zerop (bankg-lenf q))
(zerop (bankg-lenr q))))

(defmethod snoc ((q bankqg) x)
(bankq-check (bankq-lenf q) (bankq-f q)
(1+ (bankg-lenr q)) (ztream:zpush x (bankq-r q))))

(defmethod head ((q bankq))
(ztream:head (bankq-f q)))

(defmethod tail ((q bankq))

99

(if (ztream:isEmpty (bankq-f q))
;3 If you delete the front of an empty q,
;; you get an empty q. The q we have is
;; already empty, so we’ll return that.
q
(bankq-check (1- (bankg-lenf q)) (ztream:drop 1 (bankq-f q))
(bankg-lenr q) (bankg-r q))))

;3 PHYSICIST’S QUEUE
;55 from Okisawa, page 73

39

(defclass physq ()
((w :initarg :w :accessor physq-w)
(lenf :initarg :lenf :accessor physq-lenf)
(f :initarg :f :accessor physq-f)
(lenr :initarg :lenr :accessor physq-lenr)
(r :initarg :r :accessor physq-r)))

(defun make-physq (&optional (w nil)
(lenf 0) (f (lazy:suspend physq-make-0 nil))
(lenr 0) (r nil))
(make-instance ’physq :w w :lenf lenf :f f :lenr lenr :r r))

(defun physq-checkw (w lenf f lenr r)
(make-physq (if (endp w) (lazy:force f) w)
lenf f
lenr r))

(defun physq-check (w lenf f lenr r)
(if (<= lenr lenf)
(physq-checkw w lenf f lenr r)
;; Else
(let ((f-prime (lazy:force £f)))
(physq-checkw f-prime (+ lenf lenr)
(lazy:suspend phys-normalize-0
(mappend f-prime (mreverse r)))
0 nil))))

(defmethod snoc ((q physq) x)
(physq-check (physq-w q)
(physq-lenf q) (physq-f q)
(1+ (physg-lenr q)) (mcons x (physq-r q))))

(defmethod head ((q physq))
(mfirst (physq-w q)))

(defmethod tail ((q physq))
(physq-check (mrest (physq-w q))

60 APPENDIX C. SOURCE CODE (AMO.LISP)

(1- (physg-lenf q)) (let ((f-prime (lazy:force (physq-f q))))
(lazy:suspend physq-delete-0
(mrest f-prime)))
(physq-lenr q) (physq-r q)))

;55 TIME TESTS
;;; Functions & data definitions for timing things.

39

(defstruct time-result
rate
clocks
seconds
count)

(defun time-test (fn &key (mincount 3) (minseconds 3))
(declare (type function fn))
(do ((start-time (get-internal-real-time))
(count 0 (1+ count)))
((and (<= mincount count)
(<= (* minseconds internal-time-units-per-second)
(- (get-internal-real-time) start-time)))
(let* ((clocks (- (get-internal-real-time) start-time))
(seconds (/ clocks internal-time-units-per-second))
(rate (/ count seconds)))
;3 Return a new TIME-RESULT datum
(make-time-result :rate rate :clocks clocks :seconds seconds
:count count)))
(funcall fn)))

(defun fill-queue (n q)
(dotimes (i n) (setq q (xsnoc q 42)))
Q)

(defun do-snoc-tail (q)
(xtail (xsnoc q 42)))

(defun time-testO (n make)
"Run a time test on the technique using a queue of size N."
(declare (type integer n) (type symbol make))
(let ((q (funcall make)))
(print (list ’time-testO n (class-name (class-of q))))
(force-output)
(setq q (fill-queue n q))
(list n
(class-name (class-of q))
(time-test #’(lambda () (setq q (do-smoc-tail @)))))))

61

(defun time-testl (n)

"Run TIME-TESTO on each technique."

(mapcar #’(lambda (make) (time-testO n make))
;; Must use the symbols for the functions unless we
;; memoized them before now, but I don’t want to do
;; that because I want to do non-memoized test, then
;; a memoized test. So we use symbols.
’ (make-naiveq make-batchq make-bankq make-physq)))

(defvar *time-test2-max-expt* 16)

(defun sci (n)
"Return a string which encodes the number N in scientific
notation for LaTeX."
(let* ((x (floor (log n 10.0)))
(m (/ n (expt 10.0 x))))
(format nil "$~,2F \\times 10°{"D}$" m x)))

(defun time-test2-headers (strm)
(let ((columns (mapcar #’second (time-testl 10))))
(format strm "“&\\begin{tabular}{|r“{I~"A~}|} \\hline"
(mapcar (constantly #\r) columns))
(format strm "“&{\\bf N}“{ & {\\bf “A}"} \\\\ \\hline" columns)))

(defun time-test2 (pn)
(with-open-file (strm pn :direction :output :if-exists :rename-and-delete)
(time-test2-headers strm)
(dolist (n (loop for i from O to *time-test2-max-expt* collect (expt 2 i)))
(format strm "“&"D" n)
(mapc #’(lambda (1st)
(let ((tr (third 1st)))
(format strm " & “A" (sci (time-result-rate tr)))))
(time-testl n))
(format strm " \\\\ \\hline"))
(format strm "~&\\end{tabular}")
(truename pn)))

55, ——— end of file -—-

62

APPENDIX C. SOURCE CODE (AMO.LISP)

Appendix D

Source Code (ztream.lisp)

This source code is also online at http://cybertiggyr.com/gene/amo/ztream. lisp.

;53 —%— Mode: Lisp —*-

;53 $Header: /home/gene/library/website/docsrc/amo/RCS/ztream.lisp,v 395.1 2008/04/20 17:25:45 gene Exp $
;35 Copyright (c) 2005 Gene Michael Stover. All rights reserved.

;53 This program is free software; you can redistribute it and/or modify
;35 it under the terms of the GNU Lesser General Public License as

;55 published by the Free Software Foundation; either version 2 of the
;35 License, or (at your option) any later version.

;35 This program is distributed in the hope that it will be useful,
;55 but WITHOUT ANY WARRANTY; without even the implied warranty of
;33 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;33 GNU Lesser General Public License for more details.

;35 You should have received a copy of the GNU Lesser General Public
;55 License along with this program; if not, write to the Free Software

;33 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
;55 USA

(defpackage "ZTREAM"

(:use "COMMON-LISP")

(:import-from "CYBERTIGGYR-TEST" "DEFTEST"))
(in-package "ZTREAM")

(import ’lazy:force)
(import ’lazy:suspend)

(export ’drop)

63

64 APPENDIX D. SOURCE CODE (ZTREAM.LISP)

(export ’head)
(export ’isEmpty)
(export ’make-ztream)
(export ’tail)
(export ’take)
(export ’zappend)
(export °’zpush)
(export ’zreverse)

(defun make-ztream ()
"Return an empty ZTREAM."
(suspend make-ztream nil))

;; Here are three accessors which are not in Okasaki. I use them
;; here for convenience, especially convenience in testing.
(defun ztream-p (x)

"Return true if & only if X is a ZTREAM. Actually, it’s just an
approximation because not all functions are ZTREAMs."

(functionp x))
(defun isEmpty (ztream)

"Return true if & only if the ZTREAM is empty."

(null (force ztream)))
(defun head (ztream) "Return first item from the ZTREAM"

(car (force ztream)))
(defun tail (ztream)

"Return the rest of the ZTREAM."

(cdr (force ztream)))
(defun zpush (x z)

(assert (ztream-p z))

(suspend zpush-0

(cons x 2)))

(defun zappend (a b)
"Return a new ZTREAM which is the concatenation of A & B."
(assert (ztream-p a))
(assert (ztream-p b))
(if (isEmpty a)
b
(let ((afirst (head a))
(atail (tail a)))
(suspend zappend-2
(cons afirst (zappend atail b))))))

(defun take (n z)
(declare (type integer n))
(assert (ztream-p z))
(cond ((zerop n) (suspend take-0 nil))
((isEmpty z) (suspend take-1 nil))

;; We evaluate Z now to reduce stack depth. Clisp seems
;; to have a very limited stack. This might defeat alter
;; of the performance characteristics of ZTREAMs from
;; the implementation given in Okasaki.
(let ((zhead (head z))

(ztail (tail z)))

(suspend take-2
(cons zhead (take (1- n) ztail)))))))

(defun drop (n z)
(declare (type integer n))
(assert (ztream-p z))
(cond ((zerop n) z)
((isEmpty z) (suspend drop-0 nil))
(t (drop (1- n) (tail z)))))

(defun zreverse (z)
(labels
((zreverse2 (z2 r)
(if (isEmpty z2)
r
(let ((z2head (head z2))
(z2tail (tail z2)))
(zreverse2 z2tail
(suspend zreverse-0
(cons z2head 1)))))))
(zreverse2 z (suspend zreverse-1 nil))))

;53 For the insertion sort to perform minimal work each
;55 time you extract an element, it is CRITICAL that
;33 ZINSERT do minimal work. (It’s, like, "duh", but
;53 1t took a long time to remember to implement
;55 ZINSERT that way, & until I did, I had an insertion
;55 sort which did all of its work the first time you
;3 evaluated the sorted ZTREAM.
(defun zinsert (x z lessp)
"Insert X into Z in order, returning a new ZTREAM."
(declare (type function lessp))
(let ((z0 (force 2z)))
(symbol-macrolet ((head (car z0))
(tail (cdr z0)))
(cond ((null z0) (zpush x z))
((funcall lessp x head) (zpush x z))
(t (zpush head
;; This suspension is the critical part.
(suspend zinsert-0
(force (zinsert x tail lessp)))))))))

65

66 APPENDIX D. SOURCE CODE (ZTREAM.LISP)

(defun insertion-sort (z lessp)

"Return a new ZTREAM which is a sorted version of Z. If
you remove the first K elements from the new ZTREAM, the
cost will be O(K * N), where N is the length of Z and also
the length of the new ZTREAM."

(declare (type function lessp))

(let ((z0 (force z)))

(if (null =z0)
;; Empty ZTREAM is already sorted.
z
;; Else
;3 It works whether you use this next suspension or not (as
;; the expression following it does). With the suspension,
;; 1t doesn’t do any work until you extract the first
;; element from the sorted ZTREAM. Without the suspension,
;3 1t does that exact same work immediately, so extracting
;; the first element is immediate.
;; If you embrace suspensions fully, you’d probably use the
;; version with the suspension, but since suspensions have
;; an overhead cost, since it seems likely that if you sort
;; a collection, you’ll want at least the first element from
;; it, & since the cost of fetching that first element is
;5 O(N), I choose to forgoe the suspension.
;; Note that the suspension within ZINSERT is critical! You
;; can’t do without it.
HA (suspend insertion-sort-0
HH (let ((head (car z0))
S (tail (insertion-sort (cdr z0) lessp)))
33 (force (zinsert head tail lessp)))))))
(let ((head (car z0))
(tail (insertion-sort (cdr z0) lessp)))
(zinsert head tail lessp)))))

;35 TESTS

39

(defun test0000 ()
"Null test. Always succeeds."
’£est0000)

(defun test0001 ()
"Verify that MAKE-ZTREAM does not crash."
(make-ztream)
’test0001)

(defun test0002 ()
"Verify that MAKE-ZTREAM returns an empty ZTREAM."
(isEmpty (make-ztream)))

67

(defun test0003 ()
"Verify that the HEAD of an empty ZTREAM is NIL."
(null (head (make-ztream))))

(defun test0004 ()
"Verify that the TAIL of an empty ZTREAM is NIL."
(null (tail (make-ztream))))

(defun test0010 ()
"Verify that the HEAD of a ZTREAM on which we just ZPUSHed a
thing is the thing."
(eq (head (zpush ’thing (make-ztream)))
’thing))

(defun test0015 ()

"Verify that the TAIL of a ZTREAM containing one thing is
empty."

(isEmpty (tail (zpush ’thing (make-ztream)))))

(defun test0100 ()
"Test that if we have a ZTREAM of 1 thing, then we TAKE 1
thing from it, we get a ZTREAM whose HEAD is the thing."
(eq (head (take 1 (zpush ’thing (make-ztream))))
’thing))

(defun test0110 ()

"Test that if we have a ZTREAM of 1 thing, then we DROP 1
thing from it, we get a ZTREAM that is empty."

(isEmpty (drop 1 (zpush ’thing (make-ztream)))))

(defun test0200 ()

"Test that we can REVERSE an empty ZTREAM & get an empty ZTREAM
in return."

(isEmpty (zreverse (make-ztream))))

(defun test0210 ()
"Test that we can REVERSE a ZTREAM of one item, & the new ZTREAM’s
HEAD is the item."
(eq (head (zreverse (zpush ’thing (make-ztream))))
’thing))

(deftest test0230 ()
"Test ZINSERT by inserting an item into an empty ZTREAM."
(let ((z (zinsert 1 (make-ztream) #’<)))
(and (eql (head z) 1)
(isEmpty (tail z)))))

(deftest test0232 ()
"Test ZINSERT by inserting an item into a ZTREAM containing

68 APPENDIX D. SOURCE CODE (ZTREAM.LISP)

one item. The new item will go in front of the ZTREAM."
(let ((z (zinsert 1 (zpush 2 (make-ztream)) #°<)))
(and (eql (head z) 1)
(eql (head (tail z)) 2)
(isEmpty (tail (tail z))))))

(deftest test0234 ()

"Test ZINSERT by inserting an item into a ZTREAM containing
one item. The new item will go behind the item that’s already
in the ZTREAM."

(let ((z (zinsert 3 (zpush 2 (make-ztream)) #°<)))

(and (eql (head z) 2)
(eql (head (tail z)) 3)
(isEmpty (tail (tail z))))))

(deftest test0236 ()
"Test ZINSERT by inserting an item into a ZTREAM containing

two items. The new item will be the second item of the new

ZTREAM."
(let (2)
;3 I broke the initialization steps into separate lines
;; for readability.
;3 Start with a two-item ZTREAM. Its elements will
;3 be (2 4).
(setq z (zpush 2 (zpush 4 (make-ztream))))
;3 Insert 3. We should get (2 3 4) in a ZTREAM.
(setq z (zinsert 3 z #°<))
;3 Check the results.
(and (eql (head z) 2)
(eql (head (tail z)) 3)
(eql (head (tail (tail z))) 4)
(isEmpty (tail (tail (tail z)))))))

(deftest test0238 ()
"Test ZINSERT by inserting an item into a ZTREAM containing

two items. The new item will be the last item of the new

ZTREAM."
(let (2)
;; I broke the initialization steps into separate lines
;; for readability.
;3 Start with a two-item ZTREAM. Its elements will
;3 be (2 3).
(setq z (zpush 2 (zpush 3 (make-ztream))))
;; Insert 4. We should get (2 3 4) in a ZTREAM.
(setq z (zinsert 4 z #°<))
;3 Check the results.
(and (eql (head z) 2)
(eql (head (tail z)) 3)
(eql (head (tail (tail z))) 4)
(isEmpty (tail (tail (tail z)))))))

(deftest test0250 ()
"Test that INSERTION-SORT properly sorts an empty ZTREAM.
A properly sorted empty ZTREAM is an empty ZTREAM."
(isEmpty (insertion-sort (make-ztream) #’<)))

(deftest test0252 ()

"Test that INSERTION-SORT properly sorts a ZTREAM which
contains one element. A properly ZTREAM of length 1 is
another ZTREAM of length 1 & containing that same element."

(let* ((z0 (zpush 1 (make-ztream)))

(z1 (insertion-sort z0 #’<)))
(and (eql (head z1) 1)
(isEmpty (tail z1)))))

(deftest test0254 ()
"Test that INSERTION-SORT properly sorts a ZTREAM which
contains two element, 1 & 2. A properly sorted version of
that ZTREAM is 1, then 2."
(let ((z (insertion-sort (zpush 1 (zpush 2 (make-ztream))) #’<)))
(and (eql (head z) 1)
(eql (head (tail z)) 2)
(isEmpty (tail (tail z))))))

(deftest test0256 ()
"Like TEST0254 except that the initial order of the elements
is 2, then 1. The proper sorted order is 1, then 2."
(let ((z (insertion-sort (zpush 2 (zpush 1 (make-ztream))) #°<)))
(and (eql (head z) 1)
(eql (head (tail z)) 2)
(isEmpty (tail (tail z))))))

(deftest test0258 ()
"Like TEST0256 except that the ZTREAM contains 3 elements."
(let ((z (insertion-sort (zpush 3 (zpush 2 (zpush 1 (make-ztream))))
#<)))
(and (eql (head z) 1)

(eql (head (tail z)) 2)
(eql (head (tail (tail z))) 3)
(isEmpty (tail (tail (tail z)))))))

(deftest test0260 (&optional (n 10))
"Create a ZTREAM of 10 randomly selected numbers, sort it, &
verify that it is correctly sorted."
(let ((z (make-ztream)))
;3 Insert 10 random numbers into Z.
(dotimes (i n) (setq z (zpush (random 100) z)))
;3 Sort it.
(setq z (insertion-sort z #’<))
;3 Verify that it’s sorted

69

70 APPENDIX D. SOURCE CODE (ZTREAM.LISP)

(do ((1 0 (1+ 1))
(j -100 (head z0))
(z0 z (tail z0)))
((or (>=1i n)
(isEmpty z0)
(< (head z0) j))
;; We have success if we inspected N items, &
;; there are no more items.
(and (= i n) (isEmpty 20))))))

(deftest test0262 ()
"Uses TEST0260 but for a ZTREAM of length 17."
(test0260 17))

(defun perf-insertion-sort ()
"Print a table of list lengths & number of comparisons
for INSERTION-SORT."
(format t ""& N K early count later count")
(format t ""&---- -——= ——————————— ")
(loop for n in ’(256 512 1024) do
(loop for k in (list 1 (floor (/ n 2)) n) do
(format t "“&"4D ~4D" n k)
(let ((z (make-ztream)) (cmp-count 0))
;5 Fill the ZTREAM
(dotimes (j n) (setq z (zpush (random 100) z)))
;; Sort the ZTREAM, counting the comparisons.
(setq z (insertion-sort z #’(lambda (a b)
(incf cmp-count)
(< ab))))
(format t " ~11D" cmp-count)
;; Remove K items from the ZTREAM. Due to delayed
;; evaluation, this may update the comparison counter.
(dotimes (i k) (setq z (tail z)))

(format t " ~11D" cmp-count)

;3 The ratio of the actual count & the theoretical
;3 count.

(format t " ~7,2F" (/ cmp-count (* n k)))

;; The tatio of the actual count & the worse case
;3 count.

(format t " ~7,2F" (/ cmp-count (* n n)))))))

55 ——— end of file -—-

Bibliography

[1] Peter Norvig. Paradigms of Artificial Intelligence: Case Studies in Common
Lisp. Morgan Kaufmann Publishers, 1992. ISBN 1-55860-191-0.

[2] Chris Okasaki. Purely Functional Data Structures. Cambridge University
Press, The Edinburgh Building, Cambridge CB2 2RU, UK, 1999. ISBN
0-521-66350-4.

71

