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Abstract

We prove a rate of convergence theorem for a consistent estimate of a
signal Xi from a time series of the form Yi = Xi +Zi with Xi = F (Xi−1),
where F is a C2 Axiom A diffeomorphism and the Zi’s are uniformly
bounded error terms. The estimate was introduced by Lalley [Lal99]. We
also present results of filtered time series from simulated data.

1 Introduction

Using both simulated data and a rate of convergence theorem, we show that
Lalley’s estimate [Lal99] of a chaotic signal in a noise-contaminated time series
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performs well. Assume we have a time series Y1, Y2, ..., Yn where Yi = Xi + Zi,
Xi are generated by an Axiom A diffeomorphism F ; the noise terms Zi are
independent of each other and the Xi’s; E(Zi) = 0. Lalley [Lal99] developed
a method in which noise can be consistently removed from the time series if
the Zi’s are uniformly bounded by a constant δ which is less than a separation
threshold of F . This method will yield an estimate of each Xi for i > κn and
i < n− κn for some pre-chosen κn = o(log n). The maximum distance between
predicted and true values within the κn window (i.e., between κn and n − κn)
will converge almost surely to zero.

In this paper we present numeric results showing “good” estimates obtained
using this method, and also show that, for any α ∈ (0, 1

2
), the maximum dis-

tance between true and predicted values will almost surely be within 1

nα of zero
eventually. Our examples of noisy time series come from Smale’s Solenoid map
and the Henon map, with i.i.d. error terms on the unit ball.

Schreiber [Sch93] presented numerical results for a similar filter for chaotic
time series.

For more information on Axiom A diffeomorphisms, see Bowen [Bow75] or
Mañe [Mañ87].

2 Lalley’s Filter

Our goal here is to recover the X ′
is from the observed, noisy data. For an

Axiom A dynamical system, Lalley [Lal99] developed a method that can be
used to recover the X ′

is if |Zi| < δ uniformly for all n, and 5δ < ∆, where
∆ ∈ (0, 1) is called a separation threshold for F ; i.e., there exists a C > 0 such
that if x and y are in Λ and 0 < |x − y| < ∆ then

|Fn(x) − Fn(y)| > ∆

for some |n| ≤ −C log |x − y|.
We will denote our estimate of Xi by X̂i, which is computed in the following

way: Choose some κn = o(log n) such that κn → ∞ (e.g., κn = (log n).1). Let

Ai =

{

ν : max
−κn≤k≤κn

|Yν+k − Yi+k| < 3δ

}

and set

X̂i =
1

|Ai|
∑

ν∈Ai

Yν

Hypothesis 2.1 The Zi are independent, uniformly bounded by a constant δ,
5δ < ∆ and E(Zi) = 0.

Hypothesis 2.2 The Zi’s are independent of the Xi’s.

Lalley proved the following theorem, a sketch of whose proof will be necessary
to explain the proof of Theorem 4.1:
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Theorem 2.1 (Lalley, 1999) Assume X0 is chosen at random according to the
SRB measure µ. Under Hypotheses 2.1 and 2.2,

lim
n→∞

max
{i=κn,...,n−κn+1}

|X̂i − Xi| = 0

almost surely.

This theorem’s proof relies on three lemmas from [Lal99], which we present
here without proof.

Lemma 2.1 There exists a constant C > 0 such that if ν ∈ Ai then

|Xi − Xν | ≤ exp (−Cκn)

Lemma 2.2 For every ǫ > 0, all sufficiently large n and all integers i = κn, ..., n−
κn,

P (|Ai| ≤ n1−4ǫ) ≤ exp(−nǫ)

Lemma 2.3 If ξ1, ξ2, ... are independent random variables uniformly bounded in
modulus by a constant δ < ∞ and if E(ξi) = 0 for every i, then for every η > 0
there exists a γ = γ(η, δ) > 0 such that for all sufficiently large m,

P

[

1

m

∣
∣
∣
∣
∣

m∑

i=1

ξi

∣
∣
∣
∣
∣
≥ η

]

≤ exp(−mγ)

Sketch of proof of Theorem 2.1. Write

X̂i = Xi +
1

|Ai|
∑

ν∈Ai

(Xν − Xi) +
1

|Ai|
∑

ν∈Ai

Zν (1)

From Lemma 2.1, the first sum converges to zero uniformly for i = κn, ..., n−
κn as n → ∞. It remains to be shown that the second sum converges to zero.
The usual approach would be to invoke the strong law of large numbers, however
the Zν ’s are not independent. Lalley’s proof hinges on writing Ai as a union of
disjoint sets in which the component sets are independent of some of the random
vectors Zν .

For each i, define A∗
i to be the set of indices ν in Ai such that |i− ν| ≤ 2κn.

Notice that |A∗
i | ≤ 4κn + 1 = o(log n), so when |Ai| > n1−ǫ for some ǫ < 1,

the indices in A∗
i will have a negligible effect on the average 1

|Ai|

∑

ν∈Ai
Zν . For

each i and each j = 1, ..., 2κn + 1, define Aj
i to be the set of all indices ν in Ai

such that ν = j mod 2κn + 1. The sets A∗
i , A

1
i , ..., A

κn

i are pairwise disjoint and

Ai = A∗
i ∪





2κn+1⋃

j=1

Aj
i



 (2)
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Now, for each integer j ∈ [1, 2κn + 1], the set Aj
i is independent of the set

of random vectors {Zν} indexed by integers ν = j mod 2κn + 1: Consider an
integer ν = j mod 2κn + 1. The event ν ∈ Aj

i is completely determined by the

values of Yi+m and Yν+m for |m| ≤ κn, and no other event {ν′ ∈ Aj
i} (ν′ 6= ν) is

influenced by the values of Yν+m for |m| ≤ κn. Also, the event {ν ∈ Aj
i} is not

affected by the value of Zν : If |Yν+m − Yi+m| < 3δ for all m = 1, ..., κn then we
would have |Xi − Xν | < δ/2 (See the proof of Lemma 2.1 in [Lal99] for a more
complete explanation). Thus the set Aj

i can be determined without knowledge
of the random vectors {Zν} where ν = j mod 2κn + 1.

Now let I be the set consisting the index ∗ and of indices j such that |Aj
i | <√

n. Let J be the remaining indices of the sets Aj
i . For each j ∈ J , Lemma 2.3

implies that for any ǫ > 0 and large n,

P




1

|Aj
i |

∣
∣
∣
∣
∣
∣

∑

ν∈Aj

i

Zν

∣
∣
∣
∣
∣
∣

≥ ǫ



 ≤ exp(−γ|Aj
i |) ≤ exp(−γ

√
n) (3)

for some constant γ > 0 depending on ǫ and δ but not on n. For sufficiently
large n,

{

|
∑

ν∈Ai

Zν | > 2ǫ|Ai|
}

⊂ {|Ai| ≤ n3/4} ∪




⋃

j∈J

{|
∑

ν∈Aj

i

Zν | > ǫ|Aj
i |}





So by Lemma 2.2 and (3), for all large n and each i between κn and n− κn,

P



|
∑

ν∈Aj

i

Zν | > 2|Ai|ǫ



 < (2κn + 1) exp(−γ
√

n) + exp(−n1/16) (4)

Since the series
∑

n ne−anα

< ∞ for any a > 0, we have

max
{i=κn,...,n−κn}

1

|Ai|

∣
∣
∣
∣
∣

∑

ν∈Ai

Zν

∣
∣
∣
∣
∣
→ 0

by the Borel-Cantelli Lemma. 2

3 Numerical results

This section presents the results of smoothing two time series of length 100, 000
with Lalley’s filter. The large sample sizes are necessary to reveal the intricate
structure of the signal; samples with fewer than about 50, 000 data do not show
the attractors well. We present graphs of noise-free, contaminated and filtered
time series, and show the performance of the filter on the Solenoid map for
different values of κn. The filter performs well for each series, and we will show
why in the next section by proving a rate of convergence theorem.
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Table 1: Sums of squares for filtering method with n = 100, 000, κn = 1, ..., 12

κn

∑n
i=1

(Xi − Yi)
2

∑n
i=1

(X̂i − Yi)
2

∑n
i=1

(X̂i − Xi)
2

1 33, 208.04 43, 430.68 10, 545.78
2 33, 208.04 35, 208.78 2, 047.50
3 33, 208.04 33, 560.26 499.87
4 33, 208.04 33, 061.06 371.09
5 33, 208.04 32, 151.31 1, 110.41
6 33, 208.04 28, 964.34 4, 274.96
7 33, 208.04 18, 712.26 14, 472.41
8 33, 208.04 7, 115.43 26, 101.77
9 33, 208.04 1, 987.28 31, 215.57
10 33, 208.04 500.3 32, 707.81
11 33, 208.04 115.41 33, 092.62
12 33, 208.04 26.68 33, 181.36

3.1 Smale’s Solenoid map

Consider the map on the solid torus T given by

Fβ(θ, x) = (2θ, βx +
1

2
eiθ)

The map can be thought of intuitively this way: Cut the torus once to get long
cylinder. Stretch the cylinder to twice its length while contracting its width by
β. Wrap the resulting long, thin cylinder around itself twice, rejoin the ends
and replace it inside the original space. Iterating the solenoid map n times
results in a very long, thin tube that winds around the inside of the torus 2n

times. Notice Fn(T ) = F ◦ ... ◦ F
︸ ︷︷ ︸

n

(T ) is a closed set contained completely inside

the interior of Fn−1(T ). Thus ∩n≥0F
n(T ) = Λ 6= ∅. It can be shown that F

is a homeomorphism on Λ. Since limn→∞ Fn(x) ∈ Λ for any x ∈ T , Λ is the
attractor for F .

100, 000 data were generated from Smale’s solenoid map with β = .45. A
partial plot of the clean data can be seen in figure 1 (plotting all of the data
results in a blurry graph). The noisy data are seen in the next figure, and the
predicted values in the next. The noise terms Zi are distributed uniformly on a
ball centered at Xi with radius 1. From the graph, the predicted values appear
close the original values.

Table 1 shows the sums of squares due to total, model and error for the
filtered solenoid series for different values of κn. From the table we can see why
a such a long time series is necessary: we need κn to grow more slowly than
log n, but require it to be large enough to allow several values to be averaged
to estimate each Xi. This is possible only for very large samples.
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Figure 1: 100,000 points from Smale’s solenoid map, β = .45.
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Figure 2: Data from previous figure with independent noise Zi distributed uni-
formly on BXi

(1)
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Figure 3: Predicted values with κ100,000 = 4
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Figure 4: 100,000 points from the Henonmap.

3.2 Henon map

The Henon map H : R2 → R2 defined by

H(x1, x2) = (a − bx2 − x2
1, x1)

is a function still not well understood. It is not an Axiom A diffeomorphism. It
does posses an invariant set Λ if a = 1.4, b = .3 and the initial point is chosen
from a quadrilateral with vertices (−1.33, 0.42), (1.32, 0.33), (1.245,−0.14) and
(−1.06,−0.5). Despite the possibility that H may not be an Axiom A diffeo-
morphism, our filtered time series captures the intricacies of the original series.
Figure 4 shows a plot of 100, 000 iterations of an initial point x chosen at ran-
dom from the aforementioned quadrilateral. Figures 5 and 6 show the noisy and
filtered time series respectively.
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Figure 5: 100,000 points from the Henon map with noise added. Each noise
term is uniformly distributed on a ball with radius .11.
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4 Convergence rate

These estimates perform well because they converge quickly, as our rate of
convergence theorem shows. Its proof relies on two lemmas, the first of which
was proved by Kolmogorov [Kol29] and is stated here in a slightly more specific
form. See [Kol29] for a proof.

Lemma 4.1 Let Sn = ξ1 + ... + ξn where the ξi are independent, E(ξi) = 0 and

|ξi| < δ. If x ≤ nδ then P (Sn > x) < exp
(

− x2

2nδ

(
1 − x

2nδ

))

Let

Z̄i =
1

|Ai|
∑

j∈Ai

Zj

be the second sum in (1).

Theorem 4.1 For any α < 1

2
and i = κn, ..., n − κn + 1 ,

P (maxi=κn,...,n−κn+1 |Z̄i| > 1

nα i.o.) = 0

Proof: As in Theorem 2.1, we may partition Ai into A∗
i and Aj

i , j =
1, ..., 2κn +1, where A∗

i consists of those indices m such that |n−m| ≤ 2κn and

Aj
i consists of those remaining indices m such that m = j mod 2κn + 1. Let

ǫ > 0 be given. Also as in Theorem 2.1, for each n we partition the sets Aj
i as

I ∪J , where I consists of the index * and those indices j for which |Aj
i | < n1−ǫ

and J consists of the remaining indices. Remember from 2.1 that if ν ∈ Aj
i

then Aj
i and Zν are independent. From Lemma 4.1, for any j ∈ J we have

P





∣
∣
∣
∣
∣
∣

∑

ν∈Aj

i

Zν

∣
∣
∣
∣
∣
∣

>
n1−α

2κn + 1

∣
∣
∣
∣

∣
∣
∣A

j
i

∣
∣
∣



 ≤ 2 exp

(

− n2−2ǫ−2α

2nδ(2κn + 1)2
(1 − n1−ǫ−α

2nδ(2κn + 1)
)

)

≤ 2 exp

(

− n1−2ǫ−2α

(2κn + 1)2
(1 − γ)

)

(5)

for some γ > 0.
Notice that when the statements |Ai|1−α > n1−ǫ and

|
∑

ν∈A1
i

Zν + ... +
∑

ν∈A2κn+1

i

Zν | = |
∑

ν∈Ai

Zν | > |Ai|1−α

are both true, there must be some j ∈ J such that
∣
∣
∣
∑

ν∈Aj

i

Zν

∣
∣
∣ > n1−ǫ−α

2κn+1
, and

this gives

{∣
∣
∣
∣
∣

∑

ν∈Ai

Zν

∣
∣
∣
∣
∣
> |Ai|1−α

}

⊂
{
|Ai| ≤ n1−ǫ

}
∪




⋃

j∈J







∣
∣
∣
∣
∣
∣

∑

ν∈Aj

i

Zν

∣
∣
∣
∣
∣
∣

>
n1−ǫ−α

2κn + 1











(6)
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Remember |J | ≤ 2κn + 1. Using (5) and (6), for j ∈ J we have

P

[ ∣
∣
∣
∣
∣

∑

ν∈Ai

Zν

∣
∣
∣
∣
∣
> |Ai|1−α

∣
∣|Ai| > n1−ǫ

]

≤ (2κn + 1)max
j∈J

P





∣
∣
∣
∣
∣
∣

∑

ν∈Aj

i

Zν

∣
∣
∣
∣
∣
∣

>
n1−ǫ−α

2κn + 1





≤ 2(2κn + 1) exp

(

− n1−2ǫ−2α

(2κn + 1)2
(1 − γ)

)

(7)

By Lemma 2.2, P [|Ai| < n1−ǫ] < exp
(
−nǫ/4

)
so by (7)

P

[

Z̄i >
1

nα

]

≤ 2(2κn + 1) exp

(−n1−2ǫ−2α

(2κn + 1)2
(1 − γ)

)

+ exp
(

−nǫ/4

)

(8)

= βn (9)

Now, when ǫ is small, so βn goes to zero exponentially quickly whenever α ∈
(0, 1

2
). So

P

[

max
i=κn,...,n−κn+1

|Z̄i| >
1

nα

]

≤ nβn

The term on the right hand side is absolutely summable over n, so by the
Borel-Cantelli Lemma, P

[
maxi=κn,...,n−κn+1 |Z̄i| > 1

nα i.o.
]

= 0. 2

Lemmas 2.2 and 2.1 state P [|Ai| < n1−4ǫ] < exp(−nǫ) for any ǫ, and that
|Xi − Xν | < exp(−Cκn). Combining these two, we have

P

[

max
i=κn,...,κn+1

1

|Ai|

∣
∣
∣
∣
∣

∑

ν∈Ai

Xi − Xν

∣
∣
∣
∣
∣
>

1

n1−4ǫ
i.o.

]

= 0. (10)

Thus, from (1), (10) and Theorem 4.1, we have:

Corollary 4.1 P
[

maxi=κn,...,n−κn+1 |X̂i − Xi| > 1

nα i.o.
]

= 0 for any α ∈
(0, 1

2
)

5 Conclusion

Lalley’s filter converges almost surely at a rate of 1

nα for any α < 1/2 and thus
performs well for time series long enough to make κn large. It would a useful
tool for experimenters in the field of dynamical systems who have access to such
long time series. Numerical results herein suggest the time series should be long
enough to ensure κn is at least 4 to clearly show the attractor.
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